Package ‘OmnipathR’

October 16, 2025
Type Package

Title OmniPath web service client and more
Version 3.16.2

Description A client for the OmniPath web service

(https://www.omnipathdb.org) and many other resources.

It also includes functions to transform and pretty print

some of the downloaded data, functions to access a number

of other resources such as BioPlex, ConsensusPathDB, EVEX,

Gene Ontology, Guide to Pharmacology (IUPHAR/BPS), Harmonizome,
HTRIdb, Human Phenotype Ontology, InWeb InBioMap, KEGG Pathway,
Pathway Commons, Ramilowski et al. 2015, RegNetwork, ReMap, TF
census, TRRUST and Vinayagam et al. 2011. Furthermore, OmnipathR

features a close integration with the NicheNet method for
ligand activity prediction from transcriptomics data, and its
R implementation "nichenetr” (available only on github).

License MIT + file LICENSE
URL https://r.omnipathdb.org/

BugReports https://github.com/saezlab/OmnipathR/issues

biocViews GraphAndNetwork, Network, Pathways, Software,
ThirdPartyClient, Datalmport, DataRepresentation,
GeneSignaling, GeneRegulation, SystemsBiology, Transcriptomics,
SingleCell, Annotation, KEGG

Encoding UTF-8
VignetteBuilder knitr
Depends R(>=4.0)

Imports checkmate, crayon, curl, digest, dplyr(>= 1.1.0), fs, httr2,
igraph, jsonlite, later, logger, lubridate, magrittr, progress,
purrr, rappdirs, readr(>= 2.0.0), readxl, rlang, rmarkdown,
RSQLite, R.utils, rvest, sessioninfo, stats, stringi, stringr,
tibble, tidyr, tidyselect, tools, utils, vctrs, withr, XML,
xml2, yaml, zip

https://r.omnipathdb.org/
https://github.com/saezlab/OmnipathR/issues

2 Contents
Suggests BiocStyle, bookdown, ggplot2, ggraph, gprofiler2, knitr,
mlrMBO, paralleIMap, ParamHelpers, R.matlab, sigmajs, smoof,
testthat
RoxygenNote 7.3.2
git_url https://git.bioconductor.org/packages/OmnipathR
git_branch RELEASE_3_21
git_last_commit e923fc4
git_last_commit_date 2025-08-30
Repository Bioconductor 3.21
Date/Publication 2025-10-15
Author Alberto Valdeolivas [aut] (ORCID:
<https://orcid.org/0000-0001-5482-9023>),
Denes Turei [cre, aut] (ORCID: <https://orcid.org/0000-0002-7249-9379>),
Attila Gabor [aut] (ORCID: <https://orcid.org/0000-0002-0776-1182>),
Diego Mananes [aut] (ORCID: <https://orcid.org/0000-0001-7247-6794>),
Aurelien Dugourd [aut] (ORCID: <https://orcid.org/0000-0002-0714-028X>)
Maintainer Denes Turei <turei.denes@gmail.com>
Contents
.omnipathr_options_defaults 8
all_uniprots e e e 8
all_uniprot_acs e e e 9
ambigUity e e 10
ANCESIOIS . . v v v v o e e e e e e e e e e e e 11
annotated_network L L L e 12
ANNOLAIONS+ v v o e e e e e e e e e e e e e 13
annotation_Categorieso e e e e e e 15
ANNOLAtION_TESOUICES . . « « v v v e e e e e e e e e e e e e e 16
biomart_query 17
bioplexl e 18
bioplex2 L 19
bioplex3 19
bioplex_all e 20
bioplex_hct116_1 e 21
bma_motif €S 22
bma_motif VS 23
chalmers_gem 23
chalmers_gem_id_mapping_table 25
chalmers_gem_id_type L 25
chalmers_gem_metabolites 26
chalmers_gem_network 27
chalmers_gem_raw e 28
chalmers_gem_reactions i 29

COMMON_NAME+ v v v e e e e e e e e e e e e e e e e e 30

https://orcid.org/0000-0001-5482-9023
https://orcid.org/0000-0002-7249-9379
https://orcid.org/0000-0002-0776-1182
https://orcid.org/0000-0001-7247-6794
https://orcid.org/0000-0002-0714-028X

Contents

3
COMPIEXES .« . v v v v e 31
compleX_GeNes e e 33
COMPIEX_TESOUICES . « « v v v v v v v e e e e e e e e e e e e e e e e e 34
consensuspathdb_download oL oo 34
consensuspathdb_raw_table 35
cosmOS_PKN . . . oL e 36
curated_ligand_receptor_interactions 38
curated_ligrec_stats L. e e e e e e 40
database_summary L e e 41
datasets_one_column L e e 41
descendants e e e e e e 42
ensembl_dataset L. L e e e e e e 43
ensembl_id_mapping_table 43
ensembl_id_type 44
ensembl_name e 45
ensembl_Organisms oL e e 46
ensembl_organiSms_raw e e 46
ensembl_orthology e 47
ensure_igraph L L e e 48
enzsub_graph 49
ENZSUD_TESOUICES v v v v e e e e e e e e e e e e e 49
EeNZYME_SUbSIIate e e e e e e e e e 50
evex_download e 52
evidences e e e e 53
EXIIa_atirS o o o e e e e e e e 54
extra_attrs_to_colS L. e e e e e e 55
extra_attr_values e 56
filter_by_resource 57
filter_evidences e e e e e e 57
filter_extra_attrs e e e e e e e e e 58
filter_intercell e e 59
filter_intercell_network 61
find_all_paths 64
from_evidences e 65
get_db . .o 66
get_ontology_db e 67
glant_componentl e e e e e e 68
go_annot_download 69
go_annot_slim e e e 70
go_ontology_download L 71
graph_interaction e e 72
guide2pharma_download o 73
harmonizome_download 74
has_extra_attrs e e e e 74
hmdb_id_mapping_table 75
hmdb_id_type e 76
hmdb_metabolite_fields 77

hmdb_protein_fields 77

Contents

hmdb_table e 78
homologene_download 79
homologene_organisms 80
homologene_raw L 81
homologene_uniprot_orthology 82
hpo_download L 83
htridb_download 83
1d_translation_resources oo e e e e e e e e e 84
Id_types e e 85
inbiomap_download 86
inbiomap_raw e 87
interaction_datasets L. L e 87
interaction_graph L. 88
INEErACtON_TESOUICES . .+ + v v v v e v e e e e e e e e e e e e e e e e e 89
INGETaCtiON_tYPES . .« v v v o o e e e e e e e e e e e e e e e e e e 90
intercell L e e 90
intercell_categories 93
intercell_consensus_filter e 94
intercell_generic_categorieso e e e 95
intercell_network e 96
Intercell_resources e e e 99
intercell_summary e e e e e 100
is_ontology_id e 100
IS_SWISSPIOL .« . . v v v v o e e e e e e 101
is_trembl . . .o L e e 102
IS_UNIPIOt . . . o o o o o e e e e e e e e e 102
kegg api_templates 103
kegg conv 103
kegg databases L. e e 104
kegg ddi. 104
kegg find 105
kegg info e 106
kegg link e 106
kegg list. 107
kegg open 107
kegg operations L e e e e 108
kegg organisms L. 109
kegg organism_codes 109
kegg_pathways_download 110
kegg_pathway_annotations Lo 111
kegg pathway_download 112
kegg pathway_list 113
kegg picture e e e 114
kegg process e e e 115
kegg query 116
kegg request e e e e e e 117
kegg rm_prefix L 117

latin_name e e 118

Contents

5
load_db e e e e 119
metalinksdb_sqlite L 120
metalinksdb_table 120
metalinksdb_tables e 121
nebi_taxid L L e e e e e e e e 121
nichenet_build model 122
nichenet_expression_datao 123
nichenet_gr_network 123
nichenet_gr_network_evex e 125
nichenet_gr_network_harmonizome 126
nichenet_gr_network_htridb oL 127
nichenet_gr_network_omnipath oL 0oL 127
nichenet_gr_network_pathwaycommons L. 128
nichenet_gr_network_regnetwork oL 129
nichenet_gr_network_remap e 130
nichenet_gr_network_trrust oL 131
nichenet_ligand_activities Lo 131
nichenet_ligand_target_links 133
nichenet_ligand_target matrixo e 134
nichenet_Ir network e 135
nichenet_Ir_network_guide2pharma 0oL 136
nichenet_Ir_network_omnipath L o 137
nichenet_Ir_network_ramilowski 138
nichenet_main e 139
nichenet_networks L e 142
nichenet_optimization. e 143
nichenet_remove_orphan_ligands 144
nichenet_results_dir e e 145
nichenet_signaling network oL o 145
nichenet_signaling_network_cpdb Lo oo 147
nichenet_signaling_network_evex oL 148
nichenet_signaling_network_harmonizome 148
nichenet_signaling network _inbiomap L0000 149
nichenet_signaling_network_omnipath oL 150
nichenet_signaling_network_pathwaycommons 151
nichenet_signaling_network_vinayagam 151
nichenet_test L e e e e e 152
nichenet_workarounds e 153
ODO_PAISEr . . . o v v v o i e e e e e e e e e e e e e e e e e e 153
oma_code e e e 155
OMA_OTZANISINS . . .« v v v e v vttt e e e e e e e e e e 156
OMA_PAITWISE .+ . v v v vt e e e e e e e e e e e e e e e e e e e 156
oma_pairwise_genesymbolso 157
oma_pairwise_translated oL 158
omnipath-interactions e 159
OmnipathR e 166
omnipath_cache_autoclean L L o 167

omnipath_cache_clean 168

Contents

omnipath_cache_clean_db 168
omnipath_cache_download_ready 169
omnipath_cache_filter_versions Lo 170
omnipath_cache_get 171
omnipath_cache_key 172
omnipath_cache_latest_or_new L 172
omnipath_cache_latest_version L oo 174
omnipath_cache_load 174
omnipath_cache_move_in 175
omnipath_cache_remove 176
omnipath_cache_save L 178
omnipath_cache_search 179
omnipath_cache_set_ext 180
omnipath_cache_update_status Lo 181
omnipath_cache_wipe 182
omnipath_config path Lo 182
omnipath_for_cosmos 183
omnipath_load_config 184
omnipath_log e 185
omnipath_logfile 186
omnipath_msg 187
omnipath_query 187
omnipath_save_config 190
omnipath_set_cachedir 191
omnipath_set_console_loglevel 192
omnipath_set_logfile_loglevel 192
omnipath_set_loglevel 193
omnipath_show_db 194
omnipath_unlock_cache_db 194
only_from L 195
ontology_ensure_id 196
oNntology_ensure_NAmMe v v v v v vt e e e e e e e e e e e e e e 197
ontology_ name_id 197
organism_for 198
orthology_translate_column 199
pathwaycommons_downloado L 200
PIVOL_annotationso e e e e e e e e 201
preppi_download 202
preppi_filter L L e 204
print_bma_motif_es. 205
print_bma_motif vs. 206
Print_interactions e e e e e e e e e e e 206
print_path_es e e 207
print_path_vs L 208
pubmed_open e e 209
query_info L e e e 210
ramilowski_download 210

ramp_id_mapping_table 211

Contents

Index

7
ramp_id_type e e e e e 212
ramp_sqlite e e e e 213
ramp_table L e 213
ramp_tables L. e 214
regnetwork_directionso 215
regnetwork_download oL 215
relations_list_to_table 216
relations_table_to_graph 217
relations_table_to_list 218
remap_dorothea_download Lo 219
remap_filtered L. 220
remap_tf_target_download L o 221
reset_config L. e e e 222
TESOUICES . & v v v o v e 223
resources_colname e 223
TESOUICES_IM .« « v v v v e e e e e e e e e e e e e e 224
resource_info L L 224
show_network L e 225
SIgNEd_PLMS e e e e e e e e e 226
simplify_intercell_network L o Lo 226
static_table L e 227
static_tables L e 228
stitch_actions e e e 229
stitch_links e e 230
stitch_network e 230
stitch_remove_prefixes L e 232
subnetwork e e e 233
swap_relationso 234
SWiSSprots_onlyo 235
tfcensus_download e 235
translate_ids e e e e e e 236
translate_ids_multi L e e 240
trembls_only 242
trrust_download L e 242
uniprot_full_id_mapping_table oL 243
uniprot_genesymbol_cleanupo L 244
uniprot_idmapping_id_types 245
uniprot_id_mapping_table 246
uniprot_id_type L 247
unique_intercell_networko oo 248
unnest_evidencCes e e e e e e e e 249
uploadlists_id_type e e 250
vinayagam_download oL o 250
walk_ontology_tree L e 251
with_extra_attrs e 252
with_references L e e 253
zenodo_download e 254

8 all_uniprots

.omnipathr_options_defaults
Default values for the package options

Description

These options describe the default settings for OmnipathR so you do not need to pass these pa-
rameters at each function call. Currently the only option useful for the public web service at om-
nipathdb.org is “omnipathr.license”. If you are a for-profit user set it to “’commercial’* to make
sure all the data you download from OmniPath is legally allowed for commercial use. Otherwise
just leave it as it is: “’academic’*. If you don’t use omnipathdb.org but within your organization
you deployed your own pypath server and want to share data whith a limited availability to outside
users, you may want to use a password. For this you can use the “omnipathr.password* option. Also
if you want the R package to work from another pypath server instead of omnipathdb.org, you can
change the option “omnipathr.url®.

Usage

.omnipathr_options_defaults

Format

An object of class 1ist of length 35.

Value

Nothing, this is not a function but a list.

all_uniprots A table with all UniProt records

Description

Retrieves a table from UniProt with all proteins for a certain organism.

Usage
all_uniprots(fields = "accession”, reviewed = TRUE, organism = 9606L)
Arguments
fields Character vector of fields as defined by UniProt. For possible values please refer
to https://www.uniprot.org/help/return_fields
reviewed Retrieve only reviewed (‘TRUE®), only unreviewed (‘FALSE®) or both (‘NULL*).

organism Character or integer: name or identifier of the organism.

https://www.uniprot.org/help/return_fields

all_uniprot_acs 9

Value

Data frame (tibble) with the requested UniProt entries and fields.

Examples

human_swissprot_entries <- all_uniprots(fields = 'id')
human_swissprot_entries

A tibble: 20,396 x 1

“Entry name~

<chr>

1 OR4K3_HUMAN

2 052A1_HUMAN

3 02AGT1_HUMAN

4 010S1_HUMAN

5 011G2_HUMAN

. with 20,386 more rows

all_uniprot_acs All UniProt ACs for one organism

Description

All UniProt ACs for one organism

Usage

all_uniprot_acs(organism = 9606, reviewed = TRUE)

Arguments

organism Character or integer: name or identifier of the organism.

reviewed Retrieve only reviewed (‘TRUE®), only unreviewed (‘FALSE®) or both (‘NULL*).
Value

Character vector of UniProt accession numbers.

Examples

human_swissprot_acs <- all_uniprot_acs()
human_swissprot_acs[1:5]

[1] "P51451" "A6H8Y1" "060885" "QI9Y3XQ" "P22223"
length(human_swissprot_acs)

[1] 20376

mouse_swissprot_acs <- all_uniprot_acs("mouse”)

10

ambiguity

ambiguity

Inspect the ambiguity of a mapping

Description

Inspect the ambiguity of a mapping

Usage

ambiguity(

d,

from_col,
to_col,

groups = NULL,
quantify = TRUE,
qualify = TRUE,
expand = NULL,
global = FALSE,
summary = FALSE

Arguments

d

from_col
to_col
groups

quantify

qualify

expand

global

Data frame: a data frame with two columns to be inspected. It might contain
arbitrary other columns. Existing grouping will be removed.

Character: column name of the "from" side of the mapping.
Character: column name of the "to" side of the mapping.

Character vector of column names. Inspect ambiguity within these groups; by
default, ambiguity is determined across all rows.

Logical or character: inspect the mappings for each ID for ambiguity. If TRUE,
for each translated column, two new columns will be created with numeric val-
ues, representing the ambiguity of the mapping on the "from" and "to" side of
the translation, respectively. If a character value provided, it will be used as a
column name suffix for the new columns.

Logical or character: inspect the mappings for each ID for ambiguity. If TRUE,
for each translated column, a new column will be inculded with values ‘one-
to-one‘, ‘one-to-many°‘, ‘many-to-one‘ or ‘many-to-many‘. If a character value
provided, it will be used as a column name suffix for the new column.

Logical: override the expansion of target columns, including ‘to_col‘: by de-
fault, this function expands data into multiple rows if the ‘to_col‘ has already
been expanded. Using this argument, the ‘to_col and other target columns will
be lists of vectors for ‘expand = FALSE‘, and simple vectors for ‘expand =
TRUE".

Logical or character: if ‘groups‘ are provided, analyse ambiguity also globally,
across the whole data frame. Character value provides a custom suffix for the
columns quantifying and qualifying global ambiguity.

ancestors 11

summary Logical: generate a summary about the ambiguity of the translation and make it
available as an attribute.
Value

A data frame (tibble) with ambiguity information added in new columns, as described at the "quan-
tify" and "qualify" arguments.

ancestors All ancestors in the ontology tree

Description

Starting from the selected nodes, recursively walks the ontology tree until it reaches the root. Col-
lects all visited nodes, which are the ancestors (parents) of the starting nodes.

Usage

ancestors(
terms,
db_key = "go_basic”,
ids = TRUE,
relations = c("is_a", "part_of", "occurs_in", "regulates”, "positively_regulates”,
"negatively_regulates”)

)
Arguments
terms Character vector of ontology term IDs or names. A mixture of IDs and names
can be provided.
db_key Character: key to identify the ontology database. For the available keys see
omnipath_show_db.
ids Logical: whether to return IDs or term names.
relations Character vector of ontology relation types. Only these relations will be used.
Details

Note: this function relies on the database manager, the first call might take long because of the
database load process. Subsequent calls within a short period should be faster. See get_ontology_db.

Value

Character vector of ontology IDs. If the input terms are all root nodes, NULL is returned. The starting
nodes won’t be included in the result unless some of them are ancestors of other starting nodes.

12 annotated_network

Examples

ancestors('G0:0005035', ids = FALSE)

[1] "molecular_function”

[2] "transmembrane signaling receptor activity”
[3] "signaling receptor activity”

[4] "molecular transducer activity”

annotated_network Network interactions with annotations

Description

Annotations are often useful in a network context, e.g. one might want to label the interacting
partners by their pathway membership. This function takes a network data frame and joins an
annotation data frame from both the left and the right side, so both the source and target molecular
entities will be labeled by their annotations. If one entity has many annotations these will yield
many rows, hence the interacting pairs won’t be unique across the data frame any more. Also if
one entity has really many annotations the resulting data frame might be huge, we recommend to
be careful with that. Finally, if you want to do the same but with intercell annotations, there is the
import_intercell_network function.

Usage

annotated_network(
network = NULL,
annot = NULL,
network_args = list(),
annot_args = list(),

)
Arguments
network Behaviour depends on type: if list, will be passed as arguments to omnipath_interactions
to obtain a network data frame; if a data frame or tibble, it will be used as a net-
work data frame; if a character vector, will be assumed to be a set of resource
names and interactions will be queried from these resources.
annot Either the name of an annotation resource (for a list of available resources call

annotation_resources), or an annotation data frame. If the data frame con-
tains more than one resources, only the first one will be used.

network_args List: if ‘network‘ is a resource name, pass these additional arguments to omnipath_interactions.
annot_args List: if ‘annot’ is a resource name, pass these additional arguments to annotations.

Column names selected from the annotation data frame (passed to dplyr: : select,
if empty all columns will be selected.)

annotations

Value

13

A data frame of interactions with annotations for both interacting entities.

Examples

signalink_with_pathways <-
annotated_network(”SignalLink3", "Signalink_pathway")

annotations

Protein and gene annotations from OmniPath

Description

Protein and gene annotations about function, localization, expression, structure and other properties,
from the https://omnipathdb.org/annotations endpoint of the OmniPath web service. Note:
there might be also a few miRNAs annotated; a vast majority of protein complex annotations are
inferred from the annotations of the members: if all members carry the same annotation the complex

inherits.
Usage
annotations(proteins = NULL, wide = FALSE, ...)
Arguments
proteins Vector containing the genes or proteins for whom annotations will be retrieved
(UniProt IDs or HGNC Gene Symbols or miRBase IDs). It is also possible
to donwload annotations for protein complexes. To do so, write ’COMPLEX:’
right before the genesymbols of the genes integrating the complex. Check the
vignette for examples.
wide Convert the annotation table to wide format, which corresponds more or less to

the original resource. If the data comes from more than one resource a list of
wide tables will be returned. See examples at pivot_annotations.

Arguments passed on to omnipath_query

organism Character or integer: name or NCBI Taxonomy ID of the organism.
OmniPath is built of human data, and the web service provides orthology
translated interactions and enzyme-substrate relationships for mouse and
rat. For other organisms and query types, orthology translation will be
called automatically on the downloaded human data before returning the
result.

resources Character vector: name of one or more resources. Restrict the
data to these resources. For a complete list of available resources, call the
‘<query_type>_resources‘ functions for the query type of interst.

https://omnipathdb.org/annotations

14 annotations

genesymbols Character or logical: TRUE or FALS or "yes" or "no". Include
the ‘genesymbols‘ column in the results. OmniPath uses UniProt IDs as the
primary identifiers, gene symbols are optional.

fields Character vector: additional fields to include in the result. For a list of
available fields, call ‘query_info("interactions")*.

default_fields Logical: if TRUE, the default fields will be included.

silent Logical: if TRUE, no messages will be printed. By default a summary
message is printed upon successful download.

logicals Character vector: fields to be cast to logical.

format Character: if "json", JSON will be retrieved and processed into a nested
list; any other value will return data frame.

download_args List: parameters to pass to the download function, which is
readr: :read_tsv by default, and jsonlite: :stream_inif format = "json".
Note: as these are both wrapped into a downloader using curl::curl, a
curl handle can be also passed here under the name handle.

add_counts Logical: if TRUE, the number of references and number of re-
sources for each record will be added to the result.

license Character: license restrictions. By default, data from resources allow-
ing "academic" use is returned by OmniPath. If you use the data for work
in a company, you can provide "commercial” or "for-profit", which will re-
strict the data to those records which are supported by resources that allow
for-profit use.

password Character: password for the OmniPath web service. You can pro-
vide a special password here which enables the use of ‘license = "ignore"*
option, completely bypassing the license filter.

exclude Character vector: resource or dataset names to be excluded. The data
will be filtered after download to remove records of the excluded datasets
and resources.

strict_evidences Logical: reconstruct the "sources" and "references" columns
of interaction data frames based on the "evidences" column, strictly filtering
them to the queried datasets and resources. Without this, the "sources" and
"references" fields for each record might contain information for datasets
and resources other than the queried ones, because the downloaded records
are a result of a simple filtering of an already integrated data frame.

genesymbol_resource Character: "uniprot" (default) or "ensembl". The Om-
niPath web service uses the primary gene symbols as provided by UniProt.
By passing "ensembl" here, the UniProt gene symbols will be replaced by
the ones used in Ensembl. This translation results in a loss of a few records,
and multiplication of another few records due to ambiguous translation.

cache Logical: use caching, load data from and save to the. The cache directory
by default belongs to the user, located in the user’s default cache directory,
and named "OmnipathR". Find out about it by getOption("omnipathr.cachedir™).
Can be changed by omnipath_set_cachedir.

Details

Downloading the full annotations dataset is disabled by default because the size of this data is
around 1GB. We recommend to retrieve the annotations for a set of proteins or only from a few

annotation_categories 15

resources, depending on your interest. You can always download the full database from https://
archive.omnipathdb.org/omnipath_webservice_annotations__recent.tsv using any stan-
dard R or readr method.

Value

A data frame or list of data frames:

 If wide=FALSE (default), all the requested resources will be in a single long format data frame.

 If wide=TRUE: one or more data frames with columns specific to the requested resources. If
more than one resources is requested a list of data frames is returned.

See Also

* annotation_resources
* pivot_annotations

e query_info

e omnipath_query

e annotated_network

Examples

annotations <- annotations(
proteins = c("TP53", "LMNA"),
resources = c("HPA_subcellular")

annotation_categories Annotation categories and resources

Description

A full list of annotation resources, keys and values.

Usage

annotation_categories()

Value

A data frame with resource names, annotation key labels and for each key all possible values.

https://archive.omnipathdb.org/omnipath_webservice_annotations__recent.tsv
https://archive.omnipathdb.org/omnipath_webservice_annotations__recent.tsv

16 annotation_resources

Examples

annot_cat <- annotation_categories()

annot_cat

A tibble: 46,307 x 3

source label value

<chr> <chr> <chr>

1 connectomeDB2020 role ligand

2 connectomeDB2020 role receptor

3 connectomeDB2020 location ECM

4 connectomeDB2020 location plasma membrane

5 connectomeDB2020 location secreted

6 KEGG-PC pathway Alanine, aspartate and glutamate metabolism
7 KEGG-PC pathway Amino sugar and nucleotide sugar metabolism
8 KEGG-PC pathway Aminoacyl-tRNA biosynthesis

9 KEGG-PC pathway Arachidonic acid metabolism

10 KEGG-PC pathway Arginine and proline metabolism

annotation_resources Retrieves a list of available resources in the annotations database of
OmniPath

Description

Get the names of the resources from https://omnipathdb.org/annotations.

Usage
annotation_resources(dataset = NULL, ...)
Arguments
dataset ignored for this query type
optional additional arguments
Value

character vector with the names of the annotation resources

See Also

¢ resources

e annotations

Examples

annotation_resources()

https://omnipathdb.org/annotations

biomart_query

17

biomart_query Query the Ensembl BioMart web service

Description

Query the Ensembl BioMart web service

Usage

biomart_query(

attrs = NULL,
filters = NULL,
transcript = FALSE,
peptide = FALSE,

gene = FALSE,
dataset = "hsapiens_gene_ensembl”
)
Arguments
attrs Character vector: one or more Ensembl attribute names.
filters Character vector: one or more Ensembl filter names.
transcript Logical: include Ensembl transcript IDs in the result.
peptide Logical: include Ensembl peptide IDs in the result.
gene Logical: include Ensembl gene IDs in the result.
dataset Character: An Ensembl dataset name.
Value

Data frame with the query result

Examples

cel_genes <- biomart_query(

attrs = c("external_gene_name"”, "start_position”, "end_position"),
gene = TRUE,
dataset = "celegans_gene_ensembl”
)
cel_genes
A tibble: 46,934 x 4
ensembl_gene_id external_gene_name start_position end_position
<chr> <chr> <dbl> <dbl>
1 WBGeneQ000000d1 aap-1 5107843 5110183
2 WBGene00000002 aat-1 9599178 9601695
3 WBGene00000003 aat-2 9244402 9246360
4 WBGeneQ0000004 aat-3 2552260 2557736
5 WBGene00000005 aat-4 6272529 6275721

18 bioplex1

. with 46,924 more rows

bioplex1 Downloads the BioPlex version 1.0 interaction dataset

Description

This dataset contains ~24,000 interactions detected in HEK293T cells using 2,594 baits. More
details at https://bioplex.hms.harvard.edu/interactions.php.

Usage

bioplex1()

Value

Data frame (tibble) with interactions.

See Also
* bioplex2
* bioplex3

e bioplex_hct116_1

bioplex_all

Examples

bioplex_interactions <- bioplex1()
nrow(bioplex_interactions)

[1] 23744

colnames(bioplex_interactions)

[1] "GeneA" "GeneB" "UniprotA” "UniprotB”

[5] "SymbolA” "SymbolB" "p_wrong" "p_no_interaction”

[9] "p_interaction”

https://bioplex.hms.harvard.edu/interactions.php

bioplex2 19

bioplex2 Downloads the BioPlex version 2.0 interaction dataset

Description

This dataset contains ~56,000 interactions detected in HEK293T cells using 5,891 baits. More
details at https://bioplex.hms.harvard.edu/interactions.php

Usage
bioplex2()

Value

Data frame (tibble) with interactions.

See Also
* bioplex1
* bioplex3
e bioplex_hct116_1
* bioplex_all

Examples

bioplex_interactions <- bioplex2()
nrow(bioplex_interactions)

[1] 56553

colnames(bioplex_interactions)

[1] "GeneA” "GeneB” "UniprotA” "UniprotB”

[5] "SymbolA” "SymbolB" "p_wrong" "p_no_interaction”

[9] "p_interaction”

bioplex3 Downloads the BioPlex version 3.0 interaction dataset

Description

This dataset contains ~120,000 interactions detected in HEK293T cells using 10,128 baits. More
details at https://bioplex.hms.harvard.edu/interactions.php.

Usage
bioplex3()

https://bioplex.hms.harvard.edu/interactions.php

20 bioplex_all

Value

Data frame (tibble) with interactions.

See Also
* bioplex1
e bioplex2
* bioplex_hct116_1
* bioplex_all

Examples

bioplex_interactions <- bioplex3()
nrow(bioplex_interactions)

[1] 118162

colnames(bioplex_interactions)

[1] "GeneA" "GeneB" "UniprotA” "UniprotB”

[5] "SymbolA” "SymbolB" "p_wrong” "p_no_interaction”

[9] "p_interaction”

bioplex_all Downloads all BioPlex interaction datasets

Description

BioPlex provides four interaction datasets: version 1.0, 2.0, 3.0 and HCT116 version 1.0. This
function downloads all of them, merges them to one data frame, removes the duplicates (based on
unique pairs of UniProt IDs) and separates the isoform numbers from the UniProt IDs. More details
at https://bioplex.hms.harvard.edu/interactions.php.

Usage
bioplex_all(unique = TRUE)

Arguments
unique Logical. Collapse the duplicate interactions into single rows or keep them as
they are. In case of merging duplicate records the maximum p value will be
choosen for each record.
Value

Data frame (tibble) with interactions.

https://bioplex.hms.harvard.edu/interactions.php

bioplex_hct116_1

See Also
* bioplex1
e bioplex2
* bioplex3
e bioplex_hct116_1

Examples

bioplex_interactions <- bioplex_all()

bioplex_interactions
A tibble: 195,538 x 11

UniprotA IsoformA UniprotB IsoformB

<chr> <int> <chr>
1 AQAV02 2 Q5K4L6
2 AOAVO2 2 Q8N5V2
3 AQAVO2 2 Q9H6S3
4 ADAVI6 2 000425
5 AQAV96 2 000443
6 AOAVI6 2 043426
7 AQAVI6 2 075127
8 AQAVI6 2 095208
9 AQAVI6 2 095900
10 ADAVI6 2 Po7910

<int>
NA
NA
NA
2
NA
NA
NA
2
NA
2

. with 195,528 more rows, and 3 more
p_no_interaction <dbl>, p_interaction <dbl>

GeneA
<dbl>
84561
84561
84561
54502
54502
54502
54502
54502
54502
54502

GeneB
<dbl>
11000
25791
64787
10643

5286

8867
26024
22905
26995

3183

SymbolA
<chr>
SLC12A8
SLC12A8
SLC12A8
RBM47
RBM47
RBM47
RBM47
RBM47
RBM47
RBM47

SymbolB
<chr>
SLC27A3
NGEF
EPS8L2
IGF2BP3
PIK3C2A
SYNJ1
PTCD1
EPN2
TRUB2
HNRNPC

variables: p_wrong <dbl>,

21

bioplex_hct116_1

Downloads the BioPlex HCT116 version 1.0 interaction dataset

Description

This dataset contains ~71,000 interactions detected in HCT116 cells using 5,522 baits. More details
at https://bioplex.hms.harvard.edu/interactions.php.

Usage
bioplex_hct116_1()

Value

Data frame (tibble) with interactions.

See Also
* bioplex1
* bioplex2
* bioplex3

bioplex_all

https://bioplex.hms.harvard.edu/interactions.php

22

Examples

bioplex_interactions <- bioplex_hct116_1()
nrow(bioplex_interactions)

[1] 70966
colnames(bioplex_interactions)

[1] "GeneA"” "GeneB" "UniprotA”
[5] "SymbolA” "SymbolB" "p_wrong"

[9] "p_interaction”

"UniprotB”
"p_no_interaction”

bma_motif es

bma_motif_es BMA motifs from a sequence of edges

Description

These motifs can be added to a BMA canvas.

Usage

bma_motif_es(edge_seq, G, granularity = 2)

Arguments
edge_seq An igraph edge sequence.
G An igraph graph object.
granularity Numeric: granularity value.
Value

Character: BMA motifs as a single string.

Examples

interactions <- omnipath(resources = "ARN")
graph <- interaction_graph(interactions)

motifs <- bma_motif_es(igraph::E(graph)[1], graph)

bma_motif vs 23

bma_motif_vs Prints a BMA motif to the screen from a sequence of nodes, which can
be copy/pasted into the BMA canvas

Description

Intended to parallel print_path_vs

Usage

bma_motif_vs(node_seq, G)

Arguments
node_seq An igraph node sequence.
G An igraph graph object.
Value

Character: BMA motifs as a single string.

Examples

interactions <- omnipath(resources = "ARN")

graph <- interaction_graph(interactions)

bma_string <- bma_motif_vs(
igraph::all_shortest_paths(

graph,
from = "ULK1'",
to = 'ATG13'

Y$res,

graph

)
chalmers_gem Genome scale metabolic model by Wang et al. 2021
Description

Process the GEMs from Wang et al., 2021 (https://github.com/SysBioChalmers) into conve-
nient tables.

Usage

chalmers_gem(organism = "Human”, orphans = TRUE)

https://github.com/SysBioChalmers

24 chalmers_gem

Arguments
organism Character or integer: an organism (taxon) identifier. Supported taxons are 9606
(Homo sapiens), 10090 (Mus musculus), 10116 (Rattus norvegicus), 7955 (Danio
rerio), 7227 (Drosophila melanogaster) and 6239 (Caenorhabditis elegans).
orphans Logical: include orphan reactions (reactions without known enzyme).
Value

List containing the following elements:

e reactions: tibble of reaction data;

¢ metabolites: tibble of metabolite data;

¢ reaction_ids: translation table of reaction identifiers;

e metabolite_ids: translation table of metabolite identifiers;

* S: Stoichiometric matrix (sparse).

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svens-

son T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model

animals as a platform for translational research. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):¢2102344118.
doi: doi:10.1073/pnas.2102344118.

See Also

e chalmers_gem_network

e chalmers_gem_metabolites

* chalmers_gem_reactions

e chalmers_gem_raw

e chalmers_gem_id_mapping_table

e cosmos_pkn

Examples

gem <- chalmers_gem()

https://doi.org/10.1073/pnas.2102344118

chalmers_gem_id_mapping_table 25

chalmers_gem_id_mapping_table
Metabolite ID translation tables from Chalmers Sysbio

Description

Metabolite ID translation tables from Chalmers Sysbio

Usage
chalmers_gem_id_mapping_table(to, from = "metabolicatlas"”, organism = "Human")
Arguments
to Character: type of ID to translate to, either label used internally in this package,
or a column name from "metabolites.tsv" distributed by Chalmers Sysbio. NSE
is supported.
from Character: type of ID to translate from, same format as "to".
organism Character or integer: name or identifier of the organism. Supported taxons are
9606 (Homo sapiens), 10090 (Mus musculus), 10116 (Rattus norvegicu), 7955
(Danio rerio), 7227 (Drosophila melanogaster) and 6239 (Caenorhabditis ele-
gans).
Value

Tibble with two columns, "From" and "To", with the corresponding ID types.

Examples

chalmers_gem_id_mapping_table('metabolicatlas', 'hmdb')

chalmers_gem_id_type Metabolite identifier type label used in Chalmers Sysbio GEM

Description

Metabolite identifier type label used in Chalmers Sysbio GEM

Usage
chalmers_gem_id_type(label)

Arguments

label Character: an ID type label, as shown in the table at translate_ids

26 chalmers_gem_metabolites

Value

Character: the Chalmers GEM specific ID type label, or the input unchanged if it could not be
translated (still might be a valid identifier name). These labels should be column names from the
"metabolites.tsv" distributed with the GEMs.

See Also

hmdb_id_type

uniprot_id_type

ensembl_id_type

uploadlists_id_type

Examples

chalmers_gem_id_type("metabolicatlas”)
[1] "metsNoComp”

chalmers_gem_metabolites
Metabolites from the Chalmers SysBio GEM (Wang et al., 2021)

Description

Metabolites from the Chalmers SysBio GEM (Wang et al., 2021)

Usage
chalmers_gem_metabolites(organism = "Human")
Arguments
organism Character or integer: an organism (taxon) identifier. Supported taxons are 9606
(Homo sapiens), 10090 (Mus musculus), 10116 (Rattus norvegicu), 7955 (Danio
rerio), 7227 (Drosophila melanogaster) and 6239 (Caenorhabditis elegans).
Value

Data frame of metabolite identifiers.

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svens-

son T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model

animals as a platform for translational research. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):e2102344118.
doi: doi:10.1073/pnas.2102344118.

https://doi.org/10.1073/pnas.2102344118

chalmers_gem_network

See Also

27

e chalmers_gem_network

e chalmers_gem_reactions

e chalmers_gem

e chalmers_gem_raw

e chalmers_gem_id_mapping_table

e cosmos_pkn

Examples

chalmers_gem_metabolites()

chalmers_gem_network Chalmers SysBio GEM in the form of gene-metabolite interactions

Description

Processing GEMs from Wang et al., 2021 (https://github.com/SysBioChalmers) to generate

PKN for COSMOS
Usage
chalmers_gem_network(
organism_or_gem = "Human",
metab_max_degree = 400L,
protein_ids = c("uniprot”, "genesymbol"),
metabolite_ids = c("hmdb"”, "kegg")
)
Arguments

organism_or_gem

Character or integer or list or data frame: either an organism (taxon) identifier or
a list containing the “reactions® data frame as it is provided by chalmers_gem,
or the reactions data frame itself. Supported taxons are 9606 (Homo sapiens),
10090 (Mus musculus), 10116 (Rattus norvegicus), 7955 (Danio rerio), 7227
(Drosophila melanogaster) and 6239 (Caenorhabditis elegans).

metab_max_degree

protein_ids

Degree cutoff used to prune metabolites with high degree assuming they are
cofactors (400 by default).

Character: translate the protein identifiers to these ID types. Each ID type results
two extra columns in the output, for the "a" and "b" sides of the interaction,
respectively. The default ID type for proteins is Esembl Gene ID, and by default
UniProt IDs and Gene Symbols are included.

https://github.com/SysBioChalmers

28 chalmers_gem_raw

metabolite_ids Character: translate the protein identifiers to these ID types. Each ID type results
two extra columns in the output, for the "a" and "b" sides of the interaction,
respectively. The default ID type for metabolites is Metabolic Atlas ID, and
HMDB IDs and KEGG IDs are included.

Value

Data frame (tibble) of gene-metabolite interactions.

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svens-

son T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model

animals as a platform for translational research. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):¢2102344118.
doi: doi:10.1073/pnas.2102344118.

See Also

e chalmers_gem

e chalmers_gem_metabolites

e chalmers_gem_reactions

e chalmers_gem_raw

e chalmers_gem_id_mapping_table

e cosmos_pkn

Examples

gem <- chalmers_gem_network()

chalmers_gem_raw GEM matlab file from Chalmers Sysbio (Wang et al., 2021)

Description

Downloads and imports the matlab file containing the genome scale metabolic models created by
Chalmers SysBio.

Usage
chalmers_gem_raw(organism = "Human")
Arguments
organism Character or integer: name or identifier of the organism. Supported taxons are

9606 (Homo sapiens), 10090 (Mus musculus), 10116 (Rattus norvegicu), 7955
(Danio rerio), 7227 (Drosophila melanogaster) and 6239 (Caenorhabditis ele-
gans).

https://doi.org/10.1073/pnas.2102344118

chalmers_gem_reactions 29

Details

The Matlab object is parsed into a nested list containing a number of vectors and two sparse matri-
ces. The top level contains a single element under the name "ithuman" for human; under this key
there is an array of 31 elements. These elements are labeled by the row names of the array.

Value

Matlab object containing the GEM.

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svens-

son T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model

animals as a platform for translational research. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):¢2102344118.
doi: doi:10.1073/pnas.2102344118.

See Also

e chalmers_gem_network

e chalmers_gem_reactions

e chalmers_gem

e chalmers_gem_reactions

e chalmers_gem_id_mapping_table

e cosmos_pkn

Examples

chalmers_gem_raw()

chalmers_gem_reactions
Reactions from the Chalmers SysBio GEM (Wang et al., 2021)

Description

Reactions from the Chalmers SysBio GEM (Wang et al., 2021)

Usage
chalmers_gem_reactions(organism = "Human")
Arguments
organism Character or integer: an organism (taxon) identifier. Supported taxons are 9606

(Homo sapiens), 10090 (Mus musculus), 10116 (Rattus norvegicu), 7955 (Danio
rerio), 7227 (Drosophila melanogaster) and 6239 (Caenorhabditis elegans).

https://doi.org/10.1073/pnas.2102344118

30 common_name

Value

Data frame of reaction identifiers.

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svens-

son T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model

animals as a platform for translational research. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):¢2102344118.
doi: doi:10.1073/pnas.2102344118.

See Also

e chalmers_gem_network

e chalmers_gem_metabolites

e chalmers_gem

e chalmers_gem_raw

e chalmers_gem_id_mapping_table

e cosmos_pkn

Examples

chalmers_gem_reactions()

common_name Common (English) names of organisms

Description

Common (English) names of organisms

Usage

common_name (name)

Arguments

name Vector with any kind of organism name or identifier, can be also mixed type.

Value

Character vector with common (English) taxon names, NA if a name in the input could not be
found.

https://doi.org/10.1073/pnas.2102344118

complexes

See Also

* nchi_taxid

e latin_name

31

e ensembl_name

Examples

common_name (c(10090, "cjacchus”, "Vicugna pacos”))
[1] "Mouse” "White-tufted-ear marmoset” "Alpaca”

complexes

Protein complexes from OmniPath

Description

A comprehensive dataset of protein complexes from the https://omnipathdb.org/complexes
endpoint of the OmniPath web service.

Usage

complexes(...)

Arguments

Arguments passed on to omnipath_query

organism Character or integer: name or NCBI Taxonomy ID of the organism.
OmniPath is built of human data, and the web service provides orthology
translated interactions and enzyme-substrate relationships for mouse and
rat. For other organisms and query types, orthology translation will be
called automatically on the downloaded human data before returning the
result.

resources Character vector: name of one or more resources. Restrict the
data to these resources. For a complete list of available resources, call the
‘<query_type>_resources‘ functions for the query type of interst.

genesymbols Character or logical: TRUE or FALS or "yes" or "no". Include
the ‘genesymbols‘ column in the results. OmniPath uses UniProt IDs as the
primary identifiers, gene symbols are optional.

fields Character vector: additional fields to include in the result. For a list of
available fields, call ‘query_info("interactions")‘.

default_fields Logical: if TRUE, the default fields will be included.

silent Logical: if TRUE, no messages will be printed. By default a summary
message is printed upon successful download.

logicals Character vector: fields to be cast to logical.

https://omnipathdb.org/complexes

32 complexes

format Character: if "json", JSON will be retrieved and processed into a nested
list; any other value will return data frame.

download_args List: parameters to pass to the download function, which is
readr: :read_tsv by default, and jsonlite: :stream_inif format = "json".
Note: as these are both wrapped into a downloader using curl::curl, a
curl handle can be also passed here under the name handle.

add_counts Logical: if TRUE, the number of references and number of re-
sources for each record will be added to the result.

license Character: license restrictions. By default, data from resources allow-
ing "academic" use is returned by OmniPath. If you use the data for work
in a company, you can provide "commercial”" or "for-profit", which will re-
strict the data to those records which are supported by resources that allow
for-profit use.

password Character: password for the OmniPath web service. You can pro-
vide a special password here which enables the use of ‘license = "ignore"*
option, completely bypassing the license filter.

exclude Character vector: resource or dataset names to be excluded. The data
will be filtered after download to remove records of the excluded datasets
and resources.

strict_evidences Logical: reconstruct the "sources" and "references" columns
of interaction data frames based on the "evidences" column, strictly filtering
them to the queried datasets and resources. Without this, the "sources" and
"references" fields for each record might contain information for datasets
and resources other than the queried ones, because the downloaded records
are a result of a simple filtering of an already integrated data frame.

genesymbol_resource Character: "uniprot" (default) or "ensembl". The Om-
niPath web service uses the primary gene symbols as provided by UniProt.
By passing "ensembl” here, the UniProt gene symbols will be replaced by
the ones used in Ensembl. This translation results in a loss of a few records,
and multiplication of another few records due to ambiguous translation.

cache Logical: use caching, load data from and save to the. The cache directory
by default belongs to the user, located in the user’s default cache directory,
and named "OmnipathR". Find out about it by getOption(”omnipathr.cachedir™).
Can be changed by omnipath_set_cachedir.

Value

A data frame of protein complexes.

See Also

e complex_resources
e query_info

e omnipath_query

Examples

cplx <- complexes(resources = c("CORUM", "hu.MAP"))

complex_genes 33

complex_genes Get all the molecular complexes for a given gene(s)

Description

This function returns all the molecular complexes where an input set of genes participate. User
can choose to retrieve every complex where any of the input genes participate or just retrieve these
complexes where all the genes in input set participate together.

Usage

complex_genes(complexes = complexes(), genes, all_genes = FALSE)

Arguments
complexes Data frame of protein complexes (obtained using complexes).
genes Character: search complexes where these genes present.
all_genes Logical: select only complexes where all of the genes present together. By
default complexes where any of the genes can be found are returned.
Value

Data frame of complexes

See Also

complexes

Examples

complexes <- complexes(resources = c(”"CORUM", "hu.MAP"))
query_genes <- c("LMNA", "BANF1")
complexes_with_query_genes <- complex_genes(complexes, query_genes)

34 consensuspathdb_download

complex_resources Retrieve a list of complex resources available in Omnipath

Description

Get the names of the resources from https://omnipathdb.org/complexes

Usage

complex_resources(dataset = NULL)

Arguments

dataset ignored for this query type

Value

character vector with the names of the databases

See Also

¢ resources

e complexes

Examples

complex_resources()

consensuspathdb_download
Retrieves the ConsensusPathDB network

Description

Compiles a table of binary interactions from ConsensusPathDB (http://cpdb.molgen.mpg.de/)
and translates the UniProtKB ACs to Gene Symbols.

Usage

consensuspathdb_download(complex_max_size = 4, min_score = 0.9)

https://omnipathdb.org/complexes
http://cpdb.molgen.mpg.de/

consensuspathdb_raw_table 35

Arguments

complex_max_size

min_score

Value

Numeric: do not expand complexes with a higher number of elements than this.
ConsensusPathDB does not contain conventional interactions but lists of partic-
ipants, which might be members of complexes. Some records include dozens of
participants and expanding them to binary interactions result thousands, some-
times hundreds of thousands of interactions from one single record. At the
end, this process consumes >10GB of memory and results rather unusable data,
hence it is recommended to limit the complex sizes at some low number.

Numeric: each record in ConsensusPathDB comes with a confidence score, ex-
pressing the amount of evidences. The default value, a minimum score of 0.9
retains approx. the top 30 percent of the interactions.

Data frame (tibble) with interactions.

Examples

Not run:
cpdb_data <- consensuspathdb_download(

)

nrow(cpdb_data)

min_score

[1] 252302
colnames(cpdb_data)

[1] "databases” "references
[6] "uniprot_b" "in_complex

cpdb_data
A tibble: 252,302 x 9

#

#
#
#
#
#
#
#

End(Not run)

A w N -

databases
<chr>
Reactome
Reactome
DIP,Reac.
DIP,Reac.

. with 252,

complex_max_size = 1,

.99

non

uniprot_a” "confidence” "record_id"
genesymbol_a" "genesymbol_b"

non

references uniprot_a confidence record_id uniprot_b in_com

<chr> <chr> <dbl> <int> <chr> <lgl>
NA SUMF2_HU. 1 1 SUMF1_HU. TRUE
NA SUMF1_HU. 1 1 SUMF2_HU. TRUE
22210847,. STIM1_HU. 0.998 2 TRPC1_HU. TRUE
22210847,. TRPC1_HU. 0.998 2 STIM1_HU. TRUE

292 more rows, and 2 more variables: genesymbol_a <chr>,

genesymbol_b <chr

consensuspathdb_raw_table

Downloads interaction data from ConsensusPathDB

36 cosmos_pkn

Description

Downloads interaction data from ConsensusPathDB

Usage

consensuspathdb_raw_table()

Value

Data frame (tibble) with interactions.

Examples

cpdb_raw <- consensuspathdb_raw_table()

cosmos_pkn Prior knowledge network (PKN) for COSMOS

Description

The prior knowledge network (PKN) used by COSMOS is a network of heterogenous causal in-
teractions: it contains protein-protein, reactant-enzyme and enzyme-product interactions. It is a
combination of multiple resources:

* Genome-scale metabolic model (GEM) from Chalmers Sysbio (Wang et al., 2021.)

* Network of chemical-protein interactions from STITCH (https://stitch.embl.de/)

* Protein-protein interactions from Omnipath (Tiirei et al., 2021)
This function downloads, processes and combines the resources above. With all downloads and
processing the build might take 30-40 minutes. Data is cached at various levels of processing,
shortening processing times. With all data downloaded and HMDB ID translation data prepro-

cessed, the build takes 3-4 minutes; the complete PKN is also saved in the cache, if this is available,
loading it takes only a few seconds.

Usage
cosmos_pkn(
organism = "human”,
protein_ids = c("uniprot”, "genesymbol"),

metabolite_ids = c("hmdb"”, "kegg"),
chalmers_gem_metab_max_degree = 400L,
stitch_score = 700L,

https://stitch.embl.de/

cosmos_pkn 37

Arguments

organism Character or integer: name or NCBI Taxonomy ID of an organism. Supported
organisms vary by resource: the Chalmers GEM is available only for human,
mouse, rat, fish, fly and worm. OmniPath can be translated by orthology, but
for non-vertebrate or less researched taxa very few orthologues are available.
STITCH is available for a large number of organisms, please refer to their web
page: https://stitch.embl.de/.

protein_ids Character: translate the protein identifiers to these ID types. Each ID type re-
sults two extra columns in the output, for the "source" and "target" sides of the
interaction, respectively. The default ID type for proteins depends on the re-
source, hence the "source" and "target" columns are heterogenous. By default
UniProt IDs and Gene Symbols are included. The Gene Symbols used in the
COSMOS PKN are provided by Ensembl, and do not completely agree with the
ones provided by UniProt and used in OmniPath data by default.

metabolite_ids Character: translate the metabolite identifiers to these ID types. Each ID type
results two extra columns in the output, for the "source" and "target" sides of
the interaction, respectively. The default ID type for metabolites depends on the
resource, hence the "source" and "target" columns are heterogenous. By default
HMDB IDs and KEGG IDs are included.

chalmers_gem_metab_max_degree
Numeric: remove metabolites from the Chalmers GEM network with defgrees
larger than this. Useful to remove cofactors and over-promiscuous metabolites.

stitch_score Include interactions from STITCH with combined confidence score larger than
this.

Further parameters to omnipath_interactions.

Value

A data frame of binary causal interations with effect signs, resource specific attributes and trans-
lated to the desired identifiers. The “record_id* column identifies the original records within each
resource. If one “record_id* yields multiple records in the final data frame, it is the result of one-to-
many ID translation or other processing steps. Before use, it is recommended to select one pair of
ID type columns (by combining the preferred ones) and perform “distinct by the identifier columns
and sign.

References

Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, et al. Genome-scale
metabolic network reconstruction of model animals as a platform for translational research. Pro-
ceedings of the National Academy of Sciences. 2021 Jul 27;118(30):e2102344118.

Tiirei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, Ivanova O, et al. Integrated intra- and
intercellular signaling knowledge for multicellular omics analysis. Molecular Systems Biology.
2021 Mar;17(3):€9923.

See Also

e chalmers_gem_network

https://stitch.embl.de/

38 curated_ligand_receptor_interactions

e stitch_network
e omnipath_for_cosmos

e omnipath-interactions

Examples

Not run:
human_cosmos <- cosmos_pkn(organism = "human")

End(Not run)

curated_ligand_receptor_interactions
Curated ligand-receptor interactions

Description

The OmniPath intercell database annotates individual proteins and complexes, and we combine
these annotations with network interactions on the client side, using import_intercell_network.
The architecture of this database is complex, aiming to cover a broad range of knowledge on
various levels of details and confidence. We can use the intercell_consensus_filter and
filter_intercell_network functions for automated, data driven quality filtering, in order to en-
rich the cell-cell communication network in higher confidence interactions. However, for many
users, a simple combination of the most established, expert curated ligand-receptor resources, pro-
vided by this function, fits better their purpose.

Usage

curated_ligand_receptor_interactions(
curated_resources = c("Guide2Pharma”, "HPMR"”, "ICELLNET"”, "Kirouac201@"”, "CellTalkDB",
"CellChatDB", "connectomeDB2020"),
cellphonedb = TRUE,
cellinker = TRUE,
talklr = TRUE,
signalink = TRUE,

Arguments

curated_resources
Character vector of the resource names which are considered to be expert cu-
rated. You can include any post-translational network resource here, but if you
include non ligand-receptor or non curated resources, the result will not fulfill
the original intention of this function.

curated_ligand_receptor_interactions 39

cellphonedb

cellinker

talklr

signalink

Details

Logical: include the curated interactions from CellPhoneDB (not the whole
CellPhoneDB but a subset of it).

Logical: include the curated interactions from Cellinker (not the whole Cellinker
but a subset of it).

Logical: include the curated interactions from falkir (not the whole talklr but a
subset of it).

Logical: include the ligand-receptor interactions from SignaLink. These are all
expert curated.

Passed to import_post_translational_interactions: further parameters
for the interaction data. Should not contain ‘resources‘ argument as that would
interfere with the downstream calls.

Some resources are a mixture of curated and bulk imported interactions, and sometimes it’s not
trivial to separate these, we take care of these here. This function does not use the intercell database
of OmniPath, but retrieves and filters a handful of network resources. The returned data frame has
the layout of interactions (network) data frames, and the source and target partners implicitly corre-
spond to ligand and receptor. The data frame shows all resources and references for all interactions,
but each interaction is supported by at least one ligand-receptor resource which is supposed to based
on expert curation in a ligand-receptor context.

Value

A data frame similar to inferactions (network) data frames, the source and target partners being
ligand and receptor, respectively.

See Also

e import_intercell_network

e filter_intercell_network

e annotated_network

e import_post_translational_interactions

e import_ligrecextra_interactions

Examples

curated_ligrec_stats

1r <- curated_ligand_receptor_interactions()

1r

40 curated_ligrec_stats

curated_ligrec_stats Statistics about literature curated ligand-receptor interactions

Description

Statistics about literature curated ligand-receptor interactions

Usage

curated_ligrec_stats(...)

Arguments
Passed to curated_ligand_receptor_interactions, determines the set of all
curated L-R interactions which will be compared against each of the individual
resources.

Details

The data frame contains the total number of interactions, the number of interactions which overlap
with the set of curated interactions (curated_overlap), the number of interactions with literature
references from the given resource (literature) and the number of interactions which are curated by
the given resource (curated_self). This latter we defined according to our best knowledge, in many
cases it’s not possible to distinguish curated interactions). All these numbers are also presented as a
percent of the total. Importantly, here we consider interactions curated only if they’ve been curated
in a cell-cell communication context.

Value

A data frame with estimated counts of curated ligand-receptor interactions for each L-R resource.

See Also

curated_ligand_receptor_interactions

Examples

clr <- curated_ligrec_stats()
clr

database_summary 41

database_summary Summary of the annotations and intercell database contents

Description
The ‘annotations_summary‘ and ‘intercell_summary* query types return detailed information on the
contents of these databases. It includes all the available resources, fields and values in the database.
Usage

database_summary(query_type, return_df = FALSE)

Arguments
query_type Character: either "annotations" or "intercell".
return_df Logical: return a data frame instead of list.
Value

Summary of the database contents: the available resources, fields, and their possible values. As a
nested list if format is "json", otherwise a data frame.

Examples

annotations_summary <- database_summary('annotations')

datasets_one_column Create a column with dataset names listed

Description
From logical columns for each dataset, here we create a column that is a list of character vectors,
containing dataset labels.

Usage

datasets_one_column(data, remove_logicals = TRUE)

Arguments

data Interactions data frame with dataset columns (i.e. queried with the option ‘fields
= "datasets" ‘).

remove_logicals
Logical: remove the per dataset logical columns.

42 descendants

Value

The input data frame with the new column "datasets" added.

descendants All descendants in the ontology tree

Description

Starting from the selected nodes, recursively walks the ontology tree until it reaches the leaf nodes.
Collects all visited nodes, which are the descendants (children) of the starting nodes.

Usage

descendants(
terms,
db_key = "go_basic”,
ids = TRUE,
relations = c("is_a", "part_of", "occurs_in", "regulates”, "positively_regulates”,
"negatively_regulates”)

)
Arguments
terms Character vector of ontology term IDs or names. A mixture of IDs and names
can be provided.
db_key Character: key to identify the ontology database. For the available keys see
omnipath_show_db.
ids Logical: whether to return IDs or term names.
relations Character vector of ontology relation types. Only these relations will be used.
Details

Note: this function relies on the database manager, the first call might take long because of the
database load process. Subsequent calls within a short period should be faster. See get_ontology_db.

Value

Character vector of ontology IDs. If the input terms are all leaves NULL is returned. The starting
nodes won’t be included in the result unless some of them are descendants of other starting nodes.

Examples

descendants('G0:0005035', ids = FALSE)

[1] "tumor necrosis factor-activated receptor activity”
[2] "TRAIL receptor activity”

[3] "TNFSF11 receptor activity”

ensembl_dataset 43

ensembl_dataset Ensembl dataset name from organism

Description

Ensembl dataset name from organism

Usage

ensembl_dataset(organism)

Arguments
organism Character or integer: an organism (taxon) name or identifier. If an Ensembl
dataset name is provided
Value

Character: name of an ensembl dataset.

Examples

ensembl_dataset (10090)
[1] "mmusculus_gene_ensembl”

ensembl_id_mapping_table
Identifier translation table from Ensembl

Description

Identifier translation table from Ensembl

Usage

ensembl_id_mapping_table(to, from = "uniprot”, organism = 9606)

Arguments
to Character or symbol: target ID type. See Details for possible values.
from Character or symbol: source ID type. See Details for possible values.
organism Character or integer: NCBI Taxonomy ID or name of the organism (by default

9606 for human).

44 ensembl_id_type

Details

The arguments to and from can be provided either as character or as symbol (NSE). Their possible
values are either Ensembl attribute names or synonyms listed at translate_ids.

Value

A data frame (tibble) with columns ‘From* and ‘To°.

See Also

* translate_ids

e uniprot_full_id_mapping_table
e uniprot_id_mapping_table

e hmdb_id_mapping_table

e chalmers_gem_id_mapping_table

Examples

ensp_up <- ensembl_id_mapping_table("ensp")
ensp_up

A tibble: 119,129 x 2

From To

<chr> <chr>

P03886 ENSP00000354687
P@3891 ENSPQ0000355046
P@0395 ENSP00Q000354499
P00403 ENSP00000354876
P@3928 ENSPQ@000355265
. with 119,124 more rows

g w N =

#
#
#
#
#
#
#

ensembl_id_type Ensembl identifier type label

Description

Ensembl identifier type label

Usage
ensembl_id_type(label)

Arguments

label Character: an ID type label, as shown in the table at translate_ids

ensembl name 45

Value

Character: the Ensembl specific ID type label, or the input unchanged if it could not be translated
(still might be a valid identifier name). These labels should be valid Ensembl attribute names,
directly usable in Ensembl queries.

See Also

* uniprot_id_type
e uploadlists_id_type

e chalmers_gem_id_type

hmdb_id_type

Examples

ensembl_id_type("uniprot")
[1] "uniprotswissprot”

ensembl_name Ensembl identifiers of organisms

Description

Ensembl identifiers of organisms

Usage

ensembl_name(name)

Arguments

name Vector with any kind of organism name or identifier, can be also mixed type.

Value

Character vector with Ensembl taxon names, NA if a name in the input could not be found.

See Also

* nchi_taxid
e common_name

e latin_name

46 ensembl_organisms_raw

Examples

ensembl_name(c (9606, "cat”, "dog"))

[1] "hsapiens” "fcatus"” "clfamiliaris”
ensembl_name(c("human”, "kitten", "cow"))
[1] "hsapiens” NA "btaurus”

ensembl_organisms Organism names and identifiers from Ensembl

Description
A table with various taxon names and identifiers: English common names, latin (scientific) names,
Ensembl organism IDs and NCBI taxonomy IDs.

Usage

ensembl_organisms()

Value

A data frame with the above mentioned columns.

Examples

ens_org <- ensembl_organisms()
ens_org

ensembl_organisms_raw Table of Ensembl organisms

Description

A table with various taxon IDs and metadata about related Ensembl database contents, as shown
at https://www.ensembl.org/info/about/species.html. The "Taxon ID" column contains the NCBI
Taxonomy identifiers.

Usage

ensembl_organisms_raw()

Value

The table described above as a data frame.

ensembl_orthology 47

Examples

ens_org <- ensembl_organisms_raw()
ens_org

ensembl_orthology Orthologous gene pairs from Ensembl

Description

Orthologous gene pairs from Ensembl

Usage

ensembl_orthology(
organism_a = 9606,
organism_b = 10090,
attrs_a NULL,
attrs_b = NULL,
colrename = TRUE

)
Arguments

organism_a Character or integer: organism name or identifier for the left side organism. We
query the Ensembl dataset of this organism and add the orthologues of the other
organism to it. Ideally this is the organism you translate from.

organism_b Character or integer: organism name or identifier for the right side organism.
We add orthology information of this organism to the gene records of the left
side organism.

attrs_a Further attributes about organism_a genes. Will be simply added to the attributes
list.

attrs_b Further attributes about organism_b genes (orthologues). The available attributes
are: "associated_gene_name", "chromosome", "chrom_start", "chrom_end", "wga_coverage",
"goc_score", "perc_id_r1", "perc_id", "subtype". Attributes included by de-
fault: "ensembl_gene", "ensembl_peptide", "canonical_transcript_protein", "or-
thology_confidence" and "orthology_type".

colrename Logical: replace prefixes from organism_b attribute column names, so the re-
turned table always have the same column names, no matter the organism. E.g.
for mouse these columns all have the prefix "mmusculus_homolog_", which this
option changes to "b_".

Details

Only the records with orthology information are returned. The order of columns is the following:
defaults of organism_a, extra attributes of organism_b, defaults of organism_b, extra attributes of
organism_b.

48

Value

ensure_igraph

A data frame of orthologous gene pairs with gene, transcript and peptide identifiers and confidence

values.
Examples
Not run:
sffish <- ensembl_orthology(
organism_b = 'Siamese fighting fish',
attrs_a = 'external_gene_name',

b_orthology_type <chr>, b_orthology_confidence <dbl>,

ensembl_transcript_id ensembl_peptide.

<chr>

ENSP00000481127
ENSP00000482462
ENSPQ0000482514
ENSPQ0000478910
ENSP00000479921

external_gene_n.
<chr>

NA

NA

NA

MAFIP

NA

b_canonical_transcript_protein <chr>, b_associated_gene_name <chr>

attrs_b = 'associated_gene_name'
)
sffish
A tibble: 175,608 x 10
ensembl_gene_id
<chr> <chr>
1 ENSGOQ000277196 ENSTQ0000621424
2 ENSGOQQQ0277196 ENST00000615165
3 ENSGO0000278817 ENST00000613204
4 ENSGOQ000274847 ENST0Q0000400754
5 ENSGQO0000273748 ENST00000612919
. with 175,603 more rows, and 6 more variables:
b_ensembl_peptide <chr>, b_ensembl_gene <chr>,
#
#
#

End(Not run)

ensure_igraph

Converts a network to igraph object unless it is already one

Description

Converts a network to igraph object unless it is already one

Usage

ensure_igraph(network)

Arguments

network

Value

An igraph graph object.

Either an OmniPath interaction data frame, or an igraph graph object.

enzsub_graph 49

enzsub_graph Enzyme-substrate graph

Description
Transforms the a data frame with enzyme-substrate relationships (obtained by enzyme_substrate)
to an igraph graph object.

Usage

enzsub_graph(enzsub)

Arguments

enzsub Data frame created by enzyme_substrate

Value

An igraph directed graph object.

See Also

* enzyme_substrate
e giant_component

e find_all_paths

Examples

enzsub <- enzyme_substrate(resources = c('PhosphoSite', 'SIGNOR'))
enzsub_g <- enzsub_graph(enzsub = enzsub)

enzsub_resources Retrieves a list of enzyme-substrate resources available in OmniPath

Description
Get the names of the enzyme-substrate relationship resources available in https://omnipathdb.
org/enzsub

Usage

enzsub_resources(dataset = NULL)

https://omnipathdb.org/enzsub
https://omnipathdb.org/enzsub

50 enzyme_substrate

Arguments

dataset ignored for this query type

Value

character vector with the names of the enzyme-substrate resources

See Also

® resources

* enzyme_substrate

Examples

enzsub_resources()

enzyme_substrate Enzyme-substrate (PTM) relationships from OmniPath

Description

Imports the enzyme-substrate (more exactly, enzyme-PTM) relationship database from https://
omnipathdb.org/enzsub. These are mostly kinase-substrate relationships, with some acetylation
and other types of PTMs.

Usage

enzyme_substrate(...)

Arguments

Arguments passed on to omnipath_query

organism Character or integer: name or NCBI Taxonomy ID of the organism.
OmniPath is built of human data, and the web service provides orthology
translated interactions and enzyme-substrate relationships for mouse and
rat. For other organisms and query types, orthology translation will be
called automatically on the downloaded human data before returning the
result.

resources Character vector: name of one or more resources. Restrict the
data to these resources. For a complete list of available resources, call the
‘<query_type>_resources‘ functions for the query type of interst.

genesymbols Character or logical: TRUE or FALS or "yes" or "no". Include
the ‘genesymbols‘ column in the results. OmniPath uses UniProt IDs as the
primary identifiers, gene symbols are optional.

fields Character vector: additional fields to include in the result. For a list of
available fields, call ‘query_info("interactions")‘.

https://omnipathdb.org/enzsub
https://omnipathdb.org/enzsub

enzyme_substrate 51

default_fields Logical: if TRUE, the default fields will be included.

silent Logical: if TRUE, no messages will be printed. By default a summary
message is printed upon successful download.

logicals Character vector: fields to be cast to logical.

format Character: if "json", JSON will be retrieved and processed into a nested
list; any other value will return data frame.

download_args List: parameters to pass to the download function, which is
readr: :read_tsv by default, and jsonlite::stream_inif format = "json".
Note: as these are both wrapped into a downloader using curl::curl, a
curl handle can be also passed here under the name handle.

add_counts Logical: if TRUE, the number of references and number of re-
sources for each record will be added to the result.

license Character: license restrictions. By default, data from resources allow-
ing "academic" use is returned by OmniPath. If you use the data for work
in a company, you can provide "commercial” or "for-profit", which will re-
strict the data to those records which are supported by resources that allow
for-profit use.

password Character: password for the OmniPath web service. You can pro-
vide a special password here which enables the use of ‘license = "ignore"
option, completely bypassing the license filter.

exclude Character vector: resource or dataset names to be excluded. The data
will be filtered after download to remove records of the excluded datasets
and resources.

strict_evidences Logical: reconstruct the "sources" and "references" columns
of interaction data frames based on the "evidences" column, strictly filtering
them to the queried datasets and resources. Without this, the "sources" and
"references" fields for each record might contain information for datasets
and resources other than the queried ones, because the downloaded records
are a result of a simple filtering of an already integrated data frame.

genesymbol_resource Character: "uniprot" (default) or "ensembl". The Om-
niPath web service uses the primary gene symbols as provided by UniProt.
By passing "ensembl" here, the UniProt gene symbols will be replaced by
the ones used in Ensembl. This translation results in a loss of a few records,
and multiplication of another few records due to ambiguous translation.
cache Logical: use caching, load data from and save to the. The cache directory
by default belongs to the user, located in the user’s default cache directory,
and named "OmnipathR". Find out about it by getOption("omnipathr.cachedir™).
Can be changed by omnipath_set_cachedir.

Value

A data frame of enzymes and their PTM substrates.

See Also

e enzsub_resources

e omnipath_interactions

52 evex_download

* enzsub_graph
e print_interactions
e query_info

e omnipath_query

Examples

enzsub <- enzyme_substrate(
resources = c("PhosphoSite”, "SIGNOR"),
organism = 9606

evex_download Interactions from the EVEX database

Description

Downloads interactions from EVEX, a versatile text mining resource (http://evexdb.org). Trans-
lates the Entrez Gene IDs to Gene Symbols and combines the interactions and references into a
single data frame.

Usage

evex_download(
min_confidence = NULL,
remove_negatives = TRUE,
top_confidence = NULL

Arguments

min_confidence Numeric: a threshold for confidence scores. EVEX confidence scores span
roughly from -3 to 3. By providing a numeric value in this range the lower
confidence interactions can be removed. If NULL no filtering performed.

remove_negatives
Logical: remove the records with the "negation" attribute set.

top_confidence Confidence cutoff as quantile (a number between 0 and 1). If NULL no filtering
performed.

Value

Data frame (tibble) with interactions.

http://evexdb.org

evidences 53

Examples

evex_interactions <- evex_download()
evex_interactions
A tibble: 368,297 x 13

general_event_id source_entrezge. target_entrezge. confidence negation
<dbl> <chr> <chr> <dbl> <dbl>
#1 98 8651 6774 -1.45 0
2 100 8431 6774 -1.45]
3 205 6261 6263 0.370 0
4 435 1044 1045 -1.09]
. with 368,287 more rows, and 8 more variables: speculation <dbl>,
coarse_type <chr>, coarse_polarity <chr>, refined_type <chr>,
refined_polarity <chr>, source_genesymbol <chr>,
target_genesymbol <chr>, references <chr>
evidences Show evidences for an interaction
Description

Show evidences for an interaction

Usage

evidences(

partner_a,
partner_b,
interactions = NULL,
directed = FALSE,
open = TRUE,

browser = NULL,
max_pages = 25L

)
Arguments
partner_a Identifier or name of one interacting partner. The order of the partners mat-
ter only if ‘directed is ‘TRUE‘. For both partners, vectors of more than one
identifiers can be passed.
partner_b Identifier or name of the other interacting partner.

interactions An interaction data frame. If not provided, all interactions will be loaded within

this function, but that takes noticeable time. If a ‘list‘ is provided, it will be
used as parameters for omnipath_interactions. This way you can define the
organism, datasets or the interaction type.

directed Logical: does the direction matter? If “TRUE‘, only a — b interactions will be

shown.

open Logical: open online articles in a web browser.

54 extra_attrs

browser Character: override the web browser executable used to open online articles.

max_pages Numeric: largest number of pages to open. This is to prevent opening hundreds
or thousands of pages at once.

Details

If the number of references is larger than ‘max_pages‘, the most recent ones will be opened. URLs
are passed to the browser in order of decreasing publication date, though browsers do not seem to
respect the order at all. In addition Firefox, if it’s not open already, tends to randomly open empty
tab for the first or last URL, have no idea what to do about it.

Value

Nothing.

Examples

Not run:
evidences('CALM1', 'TRPC1', list(datasets = 'omnipath'))

End(Not run)

extra_attrs Extra attribute names in an interaction data frame

Description

Interaction data frames might have an ‘extra_attrs‘ column if this field has been requested in the
query by passing the ‘fields = ’extra_attrs’ argument. This column contains resource specific at-
tributes for the interactions. The names of the attributes consist of the name of the resource and
the name of the attribute, separated by an underscore. This function returns the names of the extra
attributes available in the provided data frame.

Usage

extra_attrs(data)

Arguments
data An interaction data frame, as provided by any of the omnipath-interactions
functions.
Value

Character: the names of the extra attributes in the data frame.

extra_attrs_to_cols 55

See Also

e extra_attrs_to_cols
e has_extra_attrs

with_extra_attrs

e filter_extra_attrs

extra_attr_values

Examples

i <- omnipath(fields = "extra_attrs")
extra_attrs(i)

extra_attrs_to_cols New columns from extra attributes

Description

New columns from extra attributes

Usage
extra_attrs_to_cols(data, ..., flatten = FALSE, keep_empty = TRUE)
Arguments
data An interaction data frame.
The names of the extra attributes; NSE is supported. Custom column names can
be provided as argument names.
flatten Logical: unnest the list column even if some records have multiple values for
the attributes; these will yield multiple records in the resulted data frame.
keep_empty Logical: if ‘flatten‘ is “TRUE’, shall we keep the records which do not have the
attribute?
Value

Data frame with the new column created; the new column is list type if one interaction might have
multiple values of the attribute, or character type if

See Also

e extra_attrs

has_extra_attrs

with_extra_attrs

filter_extra_attrs

extra_attr_values

56 extra_attr_values

Examples

i <- omnipath(fields = "extra_attrs")
extra_attrs_to_cols(i, Cellinker_type, Macrophage_type)
extra_attrs_to_cols(

i,

Cellinker_type,

Macrophage_type,

flatten = TRUE,

keep_empty = FALSE

extra_attr_values Possible values of an extra attribute

Description

Extracts all unique values of an extra attribute occuring in this data frame.

Usage

extra_attr_values(data, key)

Arguments
data An interaction data frame with extra_attrs column.
key The name of an extra attribute.

Details

Note, at the end we unlist the result, which means it works well for attributes which are atomic
vectors but gives not so useful result if the attribute values are more complex objects. As the time
of writing this, no such complex extra attribute exist in OmniPath.

Value

A vector, most likely character, with the unique values of the extra attribute occuring in the data
frame.

See Also

e extra_attrs_to_cols
* has_extra_attrs

e with_extra_attrs

e filter_extra_attrs

* extra_attrs

filter_by_resource 57

Examples

op <- omnipath(fields = "extra_attrs")
extra_attr_values(op, SIGNOR_mechanism)

filter_by_resource Filters OmniPath data by resources

Description

Keeps only those records which are supported by any of the resources of interest.

Usage

filter_by_resource(data, resources = NULL)

Arguments
data A data frame downloaded from the OmniPath web service (interactions, enzyme-
substrate or complexes).
resources Character vector with resource names to keep.
Value

The data frame filtered.

Examples

interactions <- omnipath()

signor <- filter_by_resource(interactions, resources = "SIGNOR")
filter_evidences Filter evidences by dataset, resource and license
Description

Filter evidences by dataset, resource and license

Usage

filter_evidences(data, ..., datasets = NULL, resources = NULL, exclude = NULL)

58

Arguments

data

datasets
resources

exclude

Value

filter_extra_attrs

An interaction data frame with some columns containing evidences as nested
lists.

The evidences columns to filter: tidyselect syntax is supported. By default the

columns "evidences", "positive", "negative", "directed" and "undirected" are fil-
tered, if present.

A character vector of dataset names.

A character vector of resource names.

Character vector of resource names to be excluded.

The input data frame with the evidences in the selected columns filtered.

See Also

e only_from

e unnest_evidences

e from_evidences

filter_extra_attrs Filter interactions by extra attribute values

Description

Filter interactions by extra attribute values

Usage
filter_extra_attrs(data, ..., na_ok = TRUE)
Arguments
data An interaction data frame with extra_attrs column.
Extra attribute names and values. The contents of the extra attribute name for
each record will be checked against the values provided. The check by default
is a set intersection: if any element is common between the user provided values
and the values of the extra attribute for the record, the record will be matched.
Alternatively, any value can be a custom function which accepts the value of the
extra attribute and returns a single logical value. Finally, if the extra attribute
name starts with a dot, the result of the check will be negated.
na_ok Logical: keep the records which do not have the extra attribute. Typically these

are the records which are not from the resource providing the extra attribute.

filter_intercell

Value

The input data frame with records removed according to the filtering criteria.

See Also

e extra_attrs

has_extra_attrs

extra_attrs_to_cols

e with_extra_attrs

extra_attr_values

Examples

cl <- post_translational(
resources = "Cellinker”,
fields = "extra_attrs”
)
Only cell adhesion interactions from Cellinker
filter_extra_attrs(cl, Cellinker_type = "Cell adhesion”)

op <- omnipath(fields = "extra_attrs")
Any mechanism except phosphorylation
filter_extra_attrs(op, .SIGNOR_mechanism = "phosphorylation”)

59

filter_intercell Filter intercell annotations

Description

Filters a data frame retrieved by intercell.

Usage

filter_intercell(
data,
categories = NULL,
resources = NULL,
parent = NULL,
scope = NULL,
aspect = NULL,
source = NULL,
transmitter = NULL,
receiver = NULL,
secreted = NULL,
plasma_membrane_peripheral = NULL,
plasma_membrane_transmembrane = NULL,

60 filter_intercell

proteins = NULL,
causality = NULL,
topology = NULL,

)
Arguments

data An intercell annotation data frame as provided by intercell.

categories Character: allow only these values in the category column.

resources Character: allow records only from these resources.

parent Character: filter for records with these parent categories.

scope Character: filter for records with these annotation scopes. Possible values are
generic and specific.

aspect Character: filter for records with these annotation aspects. Possible values are
functional and locational.

source Character: filter for records with these annotation sources. Possible values are
composite and resource_specific.

transmitter Logical: if TRUE only transmitters, if FALSE only non-transmitters will be se-
lected, if NULL it has no effect.

receiver Logical: works the same way as transmitters.

secreted Logical: works the same way as transmitters.

plasma_membrane_peripheral
Logical: works the same way as transmitters.

plasma_membrane_transmembrane
Logical: works the same way as transmitters.

proteins Character: filter for annotations of these proteins. Gene symbols or UniProt IDs
can be used.
causality Character: filter for records with these causal roles. Possible values are transmitter

and receiver. The filter applied simultaneously to the transmitter and receiver
arguments, it’s just a different notation for the same thing.

topology Character: filter for records with these localization topologies. Possible values
are secreced, plasma_membrane_peripheral and plasma_membrane_transmembrane;
the shorter notations sec, pmp and pmtm can be used. Has the same effect as the
logical type arguments, just uses a different notation.

Ignored.

Value

The intercell annotation data frame filtered according to the specified conditions.

filter_intercell_network 61

See Also

e intercell

* intercell_categories

e intercell_generic_categories
* intercell_summary

e intercell_network

Examples

ic <- intercell()

ic <- filter_intercell(
ic,
transmitter = TRUE,
secreted = TRUE,
scope = "specific”

filter_intercell_network
Quality filter an intercell network

Description

The intercell database of OmniPath covers a very broad range of possible ways of cell to cell com-
munication, and the pieces of information, such as localization, topology, function and interaction,
are combined from many, often independent sources. This unavoidably result some weird and
unexpected combinations which are false positives in the context of intercellular communication.
intercell_network provides a shortcut (high_confidence) to do basic quality filtering. For cus-
tom filtering or experimentation with the parameters we offer this function.

Usage
filter_intercell_network(
network,
transmitter_topology = c("secreted”, "plasma_membrane_transmembrane”,
"plasma_membrane_peripheral”),
receiver_topology = "plasma_membrane_transmembrane”,

min_curation_effort = 2,
min_resources = 1,
min_references = 0,
min_provenances = 1,
consensus_percentile = 50,
loc_consensus_percentile = 30,
ligand_receptor = FALSE,
simplify = FALSE,

62

filter_intercell_network

unique_pairs = FALSE,
omnipath = TRUE,
ligrecextra = TRUE,
kinaseextra = FALSE,
pathwayextra = FALSE,

Arguments

network An intercell network data frame, as provided by intercell_network, without
simplify.
transmitter_topology
Character vector: topologies allowed for the entities in transmitter role. Abbre-
viations allowed: "sec", "pmtm" and "pmp".
receiver_topology
Same as transmitter_topology for the entities in the receiver role.
min_curation_effort
Numeric: a minimum value of curation effort (resource-reference pairs) for net-
work interactions. Use zero to disable filtering.

min_resources Numeric: minimum number of resources for interactions. The value 1 means no
filtering.

min_references Numeric: minimum number of references for interactions. Use zero to disable
filtering.

min_provenances
Numeric: minimum number of provenances (either resources or references) for
interactions. Use zero or one to disable filtering.

consensus_percentile
Numeric: percentile threshold for the consensus score of generic categories in
intercell annotations. The consensus score is the number of resources supporting
the classification of an entity into a category based on combined information of
many resources. Here you can apply a cut-off, keeping only the annotations
supported by a higher number of resources than a certain percentile of each
category. If NULL no filtering will be performed. The value is either in the 0-
1 range, or will be divided by 100 if greater than 1. The percentiles will be
calculated against the generic composite categories and then will be applied to
their resource specific annotations and specific child categories.

loc_consensus_percentile
Numeric: similar to consensus_percentile for major localizations. For ex-
ample, with a value of 50, the secreted, plasma membrane transmembrane or
peripheral attributes will be TRUE only where at least 50 percent of the resources
support these.

ligand_receptor
Logical. If TRUE, only ligand and receptor annotations will be used instead of
the more generic fransmitter and receiver categories.

simplify Logical: keep only the most often used columns. This function combines a
network data frame with two copies of the intercell annotation data frames, all

filter_intercell_network 63

of them already having quite some columns. With this option we keep only the
names of the interacting pair, their intercellular communication roles, and the
minimal information of the origin of both the interaction and the annotations.

unique_pairs Logical: instead of having separate rows for each pair of annotations, drop
the annotations and reduce the data frame to unique interacting pairs. See
unique_intercell_network for details.

omnipath Logical: shortcut to include the omnipath dataset in the interactions query.
ligrecextra Logical: shortcut to include the ligrecextra dataset in the interactions query.
kinaseextra Logical: shortcut to include the kinaseextra dataset in the interactions query.

pathwayextra Logical: shortcut to include the pathwayextra dataset in the interactions query.

If simplify or unique_pairs is TRUE, additional column names can be passed
here to dplyr: :select on the final data frame. Otherwise ignored.

Value

An intercell network data frame filtered.

See Also

e intercell_network

e unique_intercell_network

e simplify_intercell_network

e intercell

* intercell_categories

e intercell_generic_categories

e intercell_summary

Examples

icn <- intercell_network()

icn_f <- filter_intercell_network(
icn,
consensus_percentile = 75,
min_provenances = 3,
simplify = TRUE

64 find_all_paths

find_all_paths All paths between two groups of vertices

Description

Finds all paths up to length ‘maxlen‘ between specified groups of vertices. This function is needed
only becaues igraph‘s ‘all_shortest_paths‘ finds only the shortest, not any path up to a defined
length.

Usage
find_all_paths(
graph,
start,
end,
attr = NULL,
mode = 'OUT',

maxlen = 2,
progress = TRUE

)
Arguments
graph An igraph graph object.
start Integer or character vector with the indices or names of one or more start ver-
tices.
end Integer or character vector with the indices or names of one or more end vertices.
attr Character: name of the vertex attribute to identify the vertices by. Necessary if
‘start® and ‘end’ are not igraph vertex ids but for example vertex names or labels.
mode Character: IN, OUT or ALL. Default is OUT.
maxlen Integer: maximum length of paths in steps, i.e. if maxlen = 3, then the longest
path may consist of 3 edges and 4 nodes.
progress Logical: show a progress bar.
Value

List of vertex paths, each path is a character or integer vector.

See Also
e interaction_graph
e enzsub_graph

e giant_component

from_evidences 65

Examples

interactions <- import_omnipath_interactions()
graph <- interaction_graph(interactions)
paths <- find_all_paths(

graph = graph,

start = c('EGFR', 'STAT3'),

end = c('AKT1', "ULK1'"),

attr = 'name’
)
from_evidences Recreate interaction records from evidences columns
Description

Recreate interaction records from evidences columns

Usage

from_evidences(data, .keep = FALSE)

Arguments
data An interaction data frame from the OmniPath web service with evidences col-
umn.
.keep Logical: keep the original "evidences" column when unnesting to separate columns
by direction.
Details

The OmniPath interaction data frames specify interactions primarily by three columns: "is_directed",
"is_stimulation" and "is_inhibition". Besides these, there are the "sources" and "references" columns
that are always included in data frames created by OmnipathR and list the resources and literature
references for each interaction, respectively. The optional "evidences" column is required to find
out which of the resources and references support the direction or effect sign of the interaction. To
properly recover information for arbitrary subsets of resources or datasets, the evidences can be
filtered first, and then the standard data frame columns can be reconstructed from the selected evi-
dences. This function is able to do the latter. It expects either an "evidences" column or evidences in
their wide format 4 columns layout. It overwrites the standard columns of interaction records based
on data extracted from the evidences, including the "curation_effort" and "consensus..." columns.

Note: The "curation_effort" might be calculated slightly differently from the version included in
the OmniPath web service. Here we count the resources and the also add the number of references
for each resource. E.g. a resource without any literatur reference counts as 1, while a resource with
3 references adds 4 to the value of the curation effort.

66 get_db
Note: If the "evidences" column has been already unnested to multiple columns ("positive", "nega-
tive", etc.) by unnest_evidences, then these will be used; otherwise, the column will be unnested
within this function.

Note: This function (or rather its wrapper, only_from) is automatically applied if the ‘strict_evidences*
argument is passed to any function querying interactions (see omnipath-interactions).

Value

A copy of the input data frame with all the standard columns describing the direction, effect, re-
sources and references of the interactions recreated based on the contents of the nested list evidences
column(s).

See Also

e filter_evidences
e unnest_evidences

e only_from

Examples

Not run:

ci <- collectri(evidences = TRUE)

ci <- unnest_evidences(ci)

ci <- filter_evidences(datasets = 'collectri')

ci <- from_evidences(ci)

the three lines above are equivalent to only_from(ci)
and all the four lines above is equivalent to:

collectri(strict_evidences = TRUE)

End(Not run)

get_db Access a built in database

Description

Databases are resources which might be costly to load but can be used many times by functions
which usually automatically load and retrieve them from the database manager. Each database has
a lifetime and will be unloaded automatically upon expiry.

Usage

get_db(key, param = NULL, reload = FALSE, ...)

get_ontology_db

Arguments

key

param

reload

Value

67

Character: the key of the database to load. For a list of available keys see
omnipath_show_db.

List: override the defaults or pass further parameters to the database loader func-
tion. See the loader functions and their default parameters in omnipath_show_db.
If the database is already loaded with different parameters it will be reloaded
with the new parameters only if the reload option is TRUE.

Reload the database if param passed here is different from the parameters used
the last time the database was loaded. If different functions with different pa-
rameters access the database repeatedly and request reload the frequent reloads
might cost substantial time and resource use.

Arguments for the loader function of the database. These override the default
arguments.

An object with the database contents. The exact format depends on the database, most often it is a

data frame or a list.

See Also

omnipath_show_db.

Examples

organisms <- get_db('organisms')

get_ontology_db

Access an ontology database

Description

Retrieves an ontology database with relations in the desired data structure. The database is auto-
matically loaded and the requested data structure is constructed if necessary. The databases stay
loaded up to a certain time period (see the option omnipathr.db_lifetime). Hence the first one
of repeated calls to this function might take long and the subsequent ones should be really quick.

Usage

get_ontology_db(key, rel_fmt = "tbl"”, child_parents = TRUE)

68 giant_component

Arguments
key Character: key of the ontology database. For the available keys see omnipath_show_db.
rel_fmt Character: the data structure of the ontology relations. Posible values are 1)

"tbl" a data frame, 2) "Ist" a list or 3) "gra" a graph.

child_parents Logical: whether the ontology relations should point from child to parents (TRUE)
or from parent to children (FALSE).

Value

A list with the following elements: 1) "names" a table with term IDs and names; 2) "namespaces”
a table to connect term IDs and namespaces they belong to; 3) "relations" a table with relations
between terms and their parent terms; 4) "subsets" a table with terms and the subsets they are part
of; 5) "obsolete" character vector with all the terms labeled as obsolete.

See Also
e omnipath_show_db

e get_db

Examples

go <- get_ontology_db('go_basic', child_parents = FALSE)

giant_component Giant component of a graph

Description

For an igraph graph object returns its giant component.

Usage

giant_component(graph)

Arguments

graph An igraph graph object.

Value

An igraph graph object containing only the giant component.

Examples

interactions <- import_post_translational_interactions()
graph <- interaction_graph(interactions)
graph_gc <- giant_component(graph)

go_annot_download

69

go_annot_download

Gene annotations from Gene Ontology

Description

Gene Ontology is an ontology of gene subcellular localizations, molecular functions and involve-
ment in biological processes. Gene products across many organisms are annotated with the ontol-
ogy terms. This function downloads the gene-ontology term associations for certain model organ-
isms or all organisms. For a description of the columns see http://geneontology.org/docs/
go-annotation-file-gaf-format-2.2/.

Usage
go_annot_download(organism = "human”, aspects = c("C", "F", "P"), slim = NULL)
Arguments
organism Character: either "chicken", "cow", "dog", "human", "pig" or "uniprot_all".
aspects Character vector with some of the following elements: "C" (cellular compo-
nent), "F" (molecular function) and "P" (biological process). Gene Ontology
is three separate ontologies called as three aspects. By this parameter you can
control which aspects to include in the output.
slim Character: if not NULL, the name of a GOsubset (slim). instead of the full GO
annotation, the slim annotation will be returned. See details at go_annot_slim.
If TRUE, the "generic" slim will be used.
Value

A tibble (data frame) of annotations as it is provided by the database

Examples

goa_data <- go_annot_download()

goa_data

A tibble: 606,840 x 17

db db_object_id db_object_symbol qualifier go_id db_ref

<fct> <chr> <chr> <fct> <chr> <chr>

1 UniProt. AQAQ24RBG1 NUDT4B NA G0:000. GO_REF:00.
2 UniProt. AQAQ24RBG1 NUDT4B NA GO:000. GO_REF:00.
3 UniProt. AQAQ24RBG1 NUDT4B NA GO:004. GO_REF:00.
4 UniProt. AQAQ24RBG1 NUDT4B NA G0:005. GO_REF:00.
5 UniProt. AQAQ24RBG1 NUDT4B NA G0:005. GO_REF:00.

. with 606,830 more rows, and 11 more variables:
evidence_code <fct>, with_or_from <chr>, aspect <fct>,
db_object_name <chr>, db_object_synonym <chr>,
db_object_type <fct>, taxon <fct>, date <date>,

assigned_by
gene_produc

<fct>, annotation_extension <chr>,
t_from_id <chr>

http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/
http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/

70

go_annot_slim

go_annot_slim

GO slim gene annotations

Description

GO slims are subsets of the full GO which "give a broad overview of the ontology content without
the detail of the specific fine grained terms". In order to annotate genes with GO slim terms, we
take the annotations and search all ancestors of the terms up to the root of the ontology tree. From
the ancestors we select the terms which are part of the slim subset.

Usage
go_annot_slim(
organism = "human”,
slim = "generic”,
aspects - C(HC"’ IIFH, HP”),
cache = TRUE
)
Arguments
organism Character: either "chicken", "cow", "dog", "human", "pig" or "uniprot_all".
slim Character: the GO subset (GO slim) name. Available GO slims are: "agr" (Al-
liance for Genomics Resources), "generic", "aspergillus", "candida", "drosophila”,
"chembl", "metagenomic", "mouse", "plant", "pir" (Protein Information Re-
source), "pombe" and "yeast".
aspects Character vector with some of the following elements: "C" (cellular compo-
nent), "F" (molecular function) and "P" (biological process). Gene Ontology
is three separate ontologies called as three aspects. By this parameter you can
control which aspects to include in the output.
cache Logical: Load the result from cache if available.
Details

Building the GO slim is resource intensive in its current implementation. For human annotation and
generic GO slim it might take around 20 minutes. The result is saved into the cache so next time
loading the data from there is really quick. If the cache option is FALSE the data will be built fresh
(the annotation and ontology files still might come from cache), and the newly build GO slim will
overwrite the cache instance.

Value

A tibble (data frame) of genes annotated with ontology terms in in the GO slim (subset).

go_ontology_download 71

See Also

e go_annot_download
e go_ontology_download

e get_db

Examples
Not run:
goslim <- go_annot_slim(organism = 'human', slim = 'generic')
goslim
A tibble: 276,371 x 8
db db_object_id db_object_symbol go_id aspect db_object_name
<fct> <chr> <chr> <chr> <fct> <chr>
1 UniPr. AQAQ24RBG1 NUDT4B G0:0. F Diphosphoinosito.
2 UniPr. AQAQ24RBG1 NUDT4B G0:0. F Diphosphoinosito.
3 UniPr. AQAQ24RBG1 NUDT4B G0:90. C Diphosphoinosito.
4 UniPr. AQAQ24RBG1 NUDT4B G0:0. C Diphosphoinosito.
5 UniPr. AQAQ24RBG1 NUDT4B G0:0. C Diphosphoinosito.
. with 276,366 more rows, and 2 more variables:
db_object_synonym <chr>, db_object_type <fct>

End(Not run)

go_ontology_download The Gene Ontology tree

Description

The Gene Ontology tree

Usage

go_ontology_download(
basic = TRUE,
tables = TRUE,
subset = NULL,
relations = c("is_a", "part_of", "occurs_in", "regulates”, "positively_regulates”,
"negatively_regulates”)

Arguments

basic Logical: use the basic or the full version of GO. As written on the GO home
page: "the basic version of the GO is filtered such that the graph is guaranteed
to be acyclic and annotations can be propagated up the graph. The relations
included are is a, part of, regulates, negatively regulates and positively regulates.
This version excludes relationships that cross the 3 GO hierarchies. This version
should be used with most GO-based annotation tools."

72

tables

subset

relations

Value

graph_interaction

In the result return data frames or nested lists. These later can be converted to
each other if necessary. However converting from table to list is faster.

Character: the GO subset (GO slim) name. GO slims are subsets of the full
GO which "give a broad overview of the ontology content without the detail
of the specific fine grained terms". This option, if not NULL, overrides the
basic parameter. Available GO slims are: "agr" (Alliance for Genomics Re-

non non

sources), "generic", "aspergillus”, "candida", "drosophila", "chembl", "metage-
won won won

nomic", "mouse", "plant", "pir" (Protein Information Resource), "pombe" and
"yeast".

Character vector: the relations to include in the processed data.

A list with the following elements: 1) "names" a list with terms as names and names as values; 2)
"namespaces” a list with terms as names and namespaces as values; 3) "relations" a list with rela-
tions between terms: terms are keys, values are lists with relations as names and character vectors of

related terms as val

ues; 4) "subsets" a list with terms as keys and character vectors of subset names

as values (or NULL if the term does not belong to any subset); 5) "obsolete" character vector with all

non non

the terms labeled as obsolete. If the tables parameter is TRUE, "names", "namespaces", "relations"
and "subsets" will be data frames (tibbles).

Examples

retrieve the ge
go <- go_ontology

neric GO slim, a small subset of the full ontology

_download(subset = 'generic')

graph_interaction

Interaction data frame from igraph graph object

Description

Convert an igraph graph object to interaction data frame. This is the reverse of the operation done
by thje interaction_graph function. Networks can be easily converted to igraph objects, then you
can make use of all igaph methods, and at the end, get back the interactions in a data frame, along
with all new edge and node attributes.

Usage

graph_interaction(graph, implode = FALSE)

Arguments

graph

implode

An igraph graph object created formerly from an OmniPath interactions data
frame.

Logical: restore the original state of the list type columns by imploding them to
character vectors, subitems separated by semicolons.

guide2pharma_download

Value

An interaction data frame.

See Also

interaction_graph

73

guide2pharma_download Downloads interactions from the Guide to Pharmacology database

Description

Downloads ligand-receptor interactions from the Guide to Pharmacology (IUPHAR/BPS) database
(https://www.guidetopharmacology.org/).

Usage

guide2pharma_download()

Value

A tibble (data frame) of interactions as it is provided by the database

Examples

g2p_data <- guide2pharma_download()

g2p_data
A tibble: 21,586 x 38

#

T E EEEE

target target_id target_gene_sym. target_uniprot target_ensembl_.

<chr>

A w N -

12S-L.
15-L0.
15-L0.
15-L0.
. with 21,576 more rows, and 33 more variables: target_ligand <chr>,

<dbl> <chr>
1387 ALOX12
1388 ALOX15
1388 ALOX15
1388 ALOX15

<chr>

P18054
P16050
P16050
P16050

<chr>

ENSG00000108839
ENSGQ0000161905
ENSGQ0000161905
ENSGQ0000161905

target_ligand_id <chr>, target_ligand_gene_symbol <chr>,
... (truncated)

https://www.guidetopharmacology.org/

74 has_extra_attrs

harmonizome_download Downloads a Harmonizome network dataset

Description

Downloads a single network dataset from Harmonizome https://maayanlab.cloud/Harmonizome.

Usage

harmonizome_download(dataset)

Arguments
dataset The dataset part of the URL. Please refer to the download section of the Harmo-
nizome webpage.
Value

Data frame (tibble) with interactions.

Examples

harmonizome_data <- harmonizome_download('phosphositeplus')
harmonizome_data
A tibble: 6,013 x 7

source source_desc source_id target target_desc target_id weight
<chr> <chr> <dbl> <chr> <chr> <dbl> <dbl>
1 TP53 na 7157 STK17A na 9263 1
2 TP53 na 7157 TP53RK na 112858 1
3 TP53 na 7157 SMG1 na 23049 1
4 UPF1 na 5976 SMG1 na 23049 1
. with 6,003 more rows

has_extra_attrs Tells if an interaction data frame has an extra_attrs column

Description

Tells if an interaction data frame has an extra_attrs column

Usage

has_extra_attrs(data)

Arguments

data An interaction data frame.

https://maayanlab.cloud/Harmonizome

hmdb_id_mapping_table 75

Value

Logical: TRUE if the data frame has the "extra_attrs" column.

See Also

e extra_attrs

* extra_attrs_to_cols
* with_extra_attrs

e filter_extra_attrs

e extra_attr_values

Examples

i <- omnipath(fields = "extra_attrs")
has_extra_attrs(i)

hmdb_id_mapping_table Identifier translation table from HMDB

Description

Identifier translation table from HMDB

Usage

hmdb_id_mapping_table(to, from, entity_type = "metabolite")

Arguments
to Character or symbol: target ID type. See Details for possible values.
from Character or symbol: source ID type. See Details for possible values.
entity_type Character: "gene" and "smol" are short symbols for proteins, genes and small
molecules respectively. Several other synonyms are also accepted.
Details

The arguments to and from can be provided either as character or as symbol (NSE). Their possible
values are either HMDB XML tag names or synonyms listed at id_types.

Value

A data frame (tibble) with columns ‘From* and ‘To".

76 hmdb_id_type

See Also

* translate_ids

e id_types

* hmdb_table

e uniprot_full_id_mapping_table
e uniprot_id_mapping_table

e ensembl_id_mapping_table

e chalmers_gem_id_mapping_table

Examples
hmdb_kegg <- hmdb_id_mapping_table("kegg"”, "hmdb")
hmdb_kegg
hmdb_id_type HMDB identifier type label
Description

HMDB identifier type label

Usage
hmdb_id_type(label)

Arguments

label Character: an ID type label, as shown in the table at translate_ids

Value

Character: the HMDB specific ID type label, or the input unchanged if it could not be translated
(still might be a valid identifier name). These labels should be valid HMDB field names, as used in
HMDB XML files.

See Also

* chalmers_gem_id_type
e uniprot_id_type

* ensembl_id_type

e uploadlists_id_type

Examples

hmdb_id_type("hmdb")
[1] "accession”

hmdb_metabolite_fields

77

hmdb_metabolite_fields
Field names for the HMDB metabolite dataset

Description

Field names for the HMDB metabolite dataset

Usage
hmdb_metabolite_fields()

Value

Character vector of field names.

See Also

* hmdb_table
e hmdb_protein_fields

Examples

hmdb_metabolite_fields()

hmdb_protein_fields Field names for the HMDB proteins dataset

Description

Field names for the HMDB proteins dataset

Usage
hmdb_protein_fields()

Value

Character vector of field names.

See Also

e hmdb_table
e hmdb_metabolite_fields

78 hmdb_table

Examples

hmdb_protein_fields()

hmdb_table Download a HMDB XML file and process it into a table

Description

Download a HMDB XML file and process it into a table

Usage

hmdb_table(dataset = "metabolites”, fields = NULL)

Arguments
dataset Character: name of an HMDB XML dataset, such as "metabolites", "proteins",
"urine", "serum", "csf", "saliva", "feces", "sweat".
fields Character: fields to extract from the XML. This is a very minimal parser that is
able to extract the text content of simple fields and multiple value fields which
contain a list of leaves within one container tag under the record tag. A full
list of fields available in HMDB is available by the hmdb_protein_fields
and hmdb_metabolite_fields functions. By default, all fields available in
the dataset are extracted.
Value

A data frame (tibble) with each column corresponding to a field.

See Also

* hmdb_protein_fields
e hmdb_metabolite_fields

Examples

hmdb_table()

homologene_download 79

homologene_download Orthology table for a pair of organisms

Description

Orthologous pairs of genes for a pair of organisms from NCBI HomoloGene, using one identifier
type.

Usage

homologene_download(
target = 10090L,
source = 9606L,
id_type = "genesymbol”,
hgroup_size = FALSE

)
Arguments
target Character or integer: name or ID of the target organism.
source Character or integer: name or ID of the source organism.
id_type Symbol or character: identifier type, possible values are "genesymbol", "entrez",
"refseqp"” or "gi".
hgroup_size Logical: include a column with the size of the homology groups. This column
distinguishes one-to-one and one-to-many or many-to-many mappings.
Details

The operation of this function is symmetric, *source* and *target* are interchangeable but deter-
mine the column layout of the output. The column "hgroup" is a numberic identifier of the homol-
ogy groups. Most of the groups consist of one pair of orthologous genes (one-to-one mapping), and
a few of them multiple ones (one-to-many or many-to-many mappings).

Value

A data frame with orthologous identifiers between the two organisms.

See Also

e homologene_raw

* homologene_uniprot_orthology

80 homologene_organisms

Examples

chimp_human <- homologene_download(chimpanzee, human, refseqp)
chimp_human
A tibble: 17,737 x 3

hgroup refsegp_source refsegp_target
<int> <chr> <chr>

1 3 NP_000007.1 NP_001104286.1
2 5 NP_000009.1 XP_003315394.1
3 6 NP_000010.1 XP_508738.2

4 7 NP_001096.1 XP_001145316.1
5 9 NP_000014.1 XP_523792.2

. with 17,732 more rows

homologene_organisms Organisms in NCBI HomoloGene

Description

Organisms in NCBI HomoloGene

Usage
homologene_organisms(name_type = "ncbi”)
Arguments
name_type Character: type of the returned name or identifier. Many synonyms are accepted,
the shortest ones: "latin", "ncbi", "common", "ensembl". Case unsensitive.
Details

Not all NCBI Taxonomy IDs can be translated to common or latin names. It means some organisms
will be missing if translated to those name types. In the future we will address this issue, until then
if you want to see all organisms use NCBI Taxonomy IDs.

Value

A character vector of organism names.

homologene_raw 81

homologene_raw Orthology data from NCBI HomoloGene

Description

Retrieves NCBI HomoloGene data without any processing. Processed tables are more useful for
most purposes, see below other functions that provide those. Genes of various organisms are
grouped into homology groups ("hgroup" column). Organisms are identified by NCBI Taxonomy
IDs, genes are identified by four different identifier types.

Usage

homologene_raw()

Value

A data frame as provided by NCBI HomoloGene.

See Also

* homologene_download

Examples

hg <- homologene_raw()

hg

A tibble: 275,237 x 6

hgroup ncbi_taxid entrez genesymbol gi refseqp

<int> <int> <chr> <chr> <chr> <chr>

01 3 9606 34 ACADM 4557231 NP_000007.1

2 3 9598 469356 ACADM 160961497 NP_001104286.1
3 3 9544 705168 ACADM 109008502 XP_001101274.1
4 3 9615 490207 ACADM 545503811 XP_005622188.1
5 3 9913 505968 ACADM 115497690 NP_001068703.1
. with 275,232 more rows

which organisms are available?

common_name (unique (hg$ncbi_taxid))

[1] "Human” "Chimpanzee” "Macaque" "Dog"” "Cow" "Mouse” "Rat" "Zebrafish”
[9] "D. melanogaster” "Caenorhabditis elegans (PRINA13758)"

[11] "Tropical clawed frog"” "Chicken”

...and 9 more organisms with missing English names.

82 homologene_uniprot_orthology

homologene_uniprot_orthology
Orthology table with UniProt IDs

Description

Orthologous pairs of UniProt IDs for a pair of organisms, based on NCBI HomoloGene data.

Usage
homologene_uniprot_orthology(target = 10090L, source = 9606L, by = entrez, ...)
Arguments
target Character or integer: name or ID of the target organism.
source Character or integer: name or ID of the source organism.
by Symbol or character: the identifier type in NCBI HomoloGene to use. Possible
values are "refseqp", "entrez", "genesymbol", "gi".
Further arguments passed to translate_ids.
Value

A data frame with orthologous pairs of UniProt IDs.

Examples

homologene_uniprot_orthology(by = genesymbol)
A tibble: 14,235 x 2

source target

<chr> <chr>

1 P11310 P45952

2 P49748 P50544

3 P24752 Q8QZT1

4 Q04771 P37172

5 Q16586 P82350

. with 14,230 more rows

hpo_download

83

hpo_download

Downloads protein annotations from Human Phenotype Ontology

Description

Human Phenotype Ontology (HPO) provides a standardized vocabulary of phenotypic abnormali-
ties encountered in human disease. Each term in the HPO describes a phenotypic abnormality. HPO
currently contains over 13,000 terms and over 156,000 annotations to hereditary diseases. See more

athttps://hpo.jax.org/app/.

Usage

hpo_download()

Value

A tibble (data frame) of annotations as it is provided by the database

Examples

hpo_data <- hpo_download()

hpo_data

A tibble: 231,738 x 9
entrez_gene_id entrez_gene_symb. hpo_term_id hpo_term_name
<chr>

#

E g

#

.

#
#

o~ w N =

<dbl> <chr>
8192 CLPP
8192 CLPP
8192 CLPP
8192 CLPP
8192 CLPP

HP:
HP:
HP:
HP:
HP:

with 231,733 more rows, and 5 more
frequency_raw <chr>, frequency_hpo
gd_source <chr>, disease_id <chr>

0000013
0004322
0000786
0000007
0000815

<chr>

Hypoplasia of the ute.
Short stature

Primary amenorrhea
Autosomal recessive i.
Hypergonadotropic hyp.

variables:
<chr>, info_gd_source <chr>,

htridb_download

Downloads TF-target interactions from HTRIdb

Description

HTRIdb (https://www.1lbbc.ibb.unesp.br/htri/)is a database of literature curated human TF-
target interactions. As the database is recently offline, the data is distributed by the OmniPath
rescued data repository (https://rescued.omnipathdb.org/).

Usage

htridb_download()

https://hpo.jax.org/app/
https://www.lbbc.ibb.unesp.br/htri/
https://rescued.omnipathdb.org/

84

Value

id_translation_resources

Data frame (tibble) with interactions.

Examples

htridb_data <- htridb_download()
htridb_data

#

A tibble: 18,630
OID GENEID_TF

<dbl> <dbl>
32399 142
32399 142
28907 196
29466 196
28911 196

#
#
#
#
#
#
#

.

g~ w N =

x 7

SYMBOL_TF GENEID_TG SYMBOL_TG TECHNIQUE

<chr> <dbl> <chr> <chr>

PARP1 675 BRCA2 Electrophoretic Mobi.
PARP1 675 BRCA2 Chromatin Immunoprec.
AHR 1543 CYP1A1 Chromatin Immunoprec.
AHR 1543 CYP1A1 Electrophoretic Mobi.
AHR 1543 CYP1A1 Chromatin Immunoprec.

with 18,620 more rows, and 1 more variable: PUBMED_ID <chr>

id_translation_resources

List available ID translation resources

Description

List available ID translation resources

Usage

id_translation_resources()

Value

A character vector with the names of the available ID translation resources.

Examples

id_translation_resources()

id_types 85

id_types ID types and synonyms in identifier translation

Description

ID types and synonyms in identifier translation

Usage

id_types()

Value

Data frame with 4 columns: the ID type labels in the resource, their synonyms in OmniPath (this
package), the name of the ID translation resource, and the entity type.

See Also

* translate_ids

e translate_ids_multi

* ensembl_id_mapping_table

e uniprot_id_mapping_table

e hmdb_id_mapping_table

e chalmers_gem_id_mapping_table
e uniprot_full_id_mapping_table
* ensembl_id_type

e uniprot_id_type

* hmdb_id_type

e chalmers_gem_id_type

Examples

id_types()

86

inbiomap_download

inbiomap_download

Downloads and preprocesses network data from InWeb InBioMap

Description

Downloads the data by inbiomap_raw, extracts the UniProt IDs, Gene Symbols and scores and
removes the irrelevant columns.

Usage

inbiomap_download(...)

Arguments

Value

A data frame (tibble) of interactions.

See Also

inbiomap_raw

Examples

Not run:

inbiomap_interactions <- inbiomap_download()

Passed to inbiomap_raw.

inbiomap_interactions

End(Not run)

A tibble: 625,641 x 7
uniprot_a uniprot_b genesymbol_a genesymbol_b inferred scorel score2

#

#
#
#
#
#
#
#

<chr>

AQA5B9
AQAUZ9
AQAVQ2
AQAVO2
AQAVI6

g w N =

<chr>

P01892
Q96CV9
P24941
Q00526
POCG48

<chr>
TRBC2
KANSL1L
SLC12A8
SLC12A8
RBM47

. with 625,631 more rows

<chr>
HLA-A
OPTN
CDK2
CDK3
uBC

<lgl>
FALSE
FALSE
TRUE
TRUE
FALSE

<dbl>
0.417
0.155
0.156
0.157
0.144

<dbl>
0.458
0.0761
0.0783
0.0821
0.0494

inbiomap_raw 87

inbiomap_raw Downloads network data from InWeb InBioMap

Description
Downloads the data from https://inbio-discover.com/map.html#downloads in tar.gz format,
extracts the PSI MITAB table and returns it as a data frame.

Usage

inbiomap_raw(curl_verbose = FALSE)

Arguments

curl_verbose Logical. Perform CURL requests in verbose mode for debugging purposes.

Value

A data frame (tibble) with the extracted interaction table.

See Also

inbiomap_download

Examples

Not run:
inbiomap_psimitab <- inbiomap_raw()

End(Not run)

interaction_datasets Datasets in the OmniPath Interactions database

Description

Datasets in the OmniPath Interactions database

Usage

interaction_datasets()

Value

Character: labels of interaction datasets.

https://inbio-discover.com/map.html#downloads

88

Examples

interaction_datasets()

interaction_graph

interaction_graph Build Omnipath interaction graph

Description

Transforms the interactions data frame to an igraph graph object.

Usage

interaction_graph(interactions = interactions)

Arguments

interactions data.frame created by

* enzyme_substrate
e omnipath-interactions

Value

An igraph graph object.

See Also

e graph_interaction

e import_omnipath_interactions

e import_pathwayextra_interactions
e import_kinaseextra_interactions
e import_ligrecextra_interactions
e import_dorothea_interactions

e import_mirnatarget_interactions
e import_all_interactions

e giant_component

e find_all_paths

Examples

interactions <- import_omnipath_interactions(resources = c('SignalLink3'))

g <- interaction_graph(interactions)

interaction_resources 89

interaction_resources Interaction resources available in Omnipath

Description

Names of the resources available in https://omnipathdb.org/interactions.

Usage

interaction_resources(dataset = NULL)

Arguments
dataset a dataset within the interactions query type. Currently available datasets are
‘omnipath‘, ‘kinaseextra‘, ‘pathwayextra‘, ‘ligrecextra‘, ‘collectri‘, ‘dorothea‘,
‘tf_target®, ‘tf_mirna‘, ‘mirnatarget’, ‘Incrna_mrna‘ and ‘small_molecule_protein®.
Value

Character: names of the interaction resources.

See Also

* resources
e omnipath

* pathwayextra

* kinaseextra

e ligrecextra

e post_translational
e dorothea

e collectri

e tf_target

* transcriptional

* mirna_target

e tf_mirna

e small_molecule

e all_interactions

Examples

interaction_resources()

https://omnipathdb.org/interactions

90 intercell

interaction_types Interaction types in the OmniPath Interactions database

Description

Interaction types in the OmniPath Interactions database

Usage

interaction_types()

Value

Character: labels of interaction types.

Examples

interaction_types()

intercell Cell-cell communication roles from OmniPath

Description

Roles of proteins in intercellular communication from the https://omnipathdb.org/intercell
endpoint of the OmniPath web service. It provides information on the roles in inter-cellular signal-
ing. E.g. if a protein is a ligand, a receptor, an extracellular matrix (ECM) component, etc.

Usage

intercell(
categories = NULL,
parent = NULL,
scope = NULL,
aspect = NULL,
source = NULL,
transmitter = NULL,
receiver = NULL,
secreted = NULL,
plasma_membrane_peripheral = NULL,
plasma_membrane_transmembrane = NULL,
proteins = NULL,
topology = NULL,
causality = NULL,
consensus_percentile = NULL,

https://omnipathdb.org/intercell

intercell 91

loc_consensus_percentile = NULL,

)
Arguments

categories vector containing the categories to be retrieved. All the genes belonging to those
categories will be returned. For further information about the categories see
get_intercell_categories.

parent vector containing the parent classes to be retrieved. All the genes belonging to
those classes will be returned. For furter information about the main classes see
get_intercell_categories.

scope either ‘specific‘ or ‘generic*

aspect either ‘locational‘ or ‘functional*

source either ‘resource_specific‘ or ‘composite*

transmitter logical, include only transmitters i.e. proteins delivering signal from a cell to its
environment.

receiver logical, include only receivers i.e. proteins delivering signal to the cell from its
environment.

secreted logical, include only secreted proteins

plasma_membrane_peripheral

logical, include only plasma membrane peripheral membrane proteins.
plasma_membrane_transmembrane

logical, include only plasma membrane transmembrane proteins.

proteins limit the query to certain proteins

topology topology categories: one or more of ‘secreted (sec), ‘plasma_membrane_peripheral‘
(pmp), ‘plasma_membrane_transmembrane‘ (pmtm) (both short or long nota-
tion can be used).

causality ‘transmitter® (trans), ‘receiver (rec) or ‘both‘ (both short or long notation can
be used).

consensus_percentile
Numeric: a percentile cut off for the consensus score of generic categories. The
consensus score is the number of resources supporting the classification of an
entity into a category based on combined information of many resources. Here
you can apply a cut-off, keeping only the annotations supported by a higher
number of resources than a certain percentile of each category. If NULL no filter-
ing will be performed. The value is either in the 0-1 range, or will be divided by
100 if greater than 1. The percentiles will be calculated against the generic com-
posite categories and then will be applied to their resource specific annotations
and specific child categories.

loc_consensus_percentile
Numeric: similar to consensus_percentile for major localizations. For ex-
ample, with a value of 50, the secreted, plasma membrane transmembrane or
peripheral attributes will be true only where at least 50 percent of the resources
support these.

92

intercell

Arguments passed on to omnipath_query

organism Character or integer: name or NCBI Taxonomy ID of the organism.
OmniPath is built of human data, and the web service provides orthology
translated interactions and enzyme-substrate relationships for mouse and
rat. For other organisms and query types, orthology translation will be
called automatically on the downloaded human data before returning the
result.

resources Character vector: name of one or more resources. Restrict the
data to these resources. For a complete list of available resources, call the
‘<query_type>_resources* functions for the query type of interst.

fields Character vector: additional fields to include in the result. For a list of
available fields, call ‘query_info("interactions")*.

default_fields Logical: if TRUE, the default fields will be included.

silent Logical: if TRUE, no messages will be printed. By default a summary
message is printed upon successful download.

logicals Character vector: fields to be cast to logical.

format Character: if "json", JSON will be retrieved and processed into a nested
list; any other value will return data frame.

download_args List: parameters to pass to the download function, which is

readr: :read_tsv by default, and jsonlite: :stream_inif format = "json".

Note: as these are both wrapped into a downloader using curl::curl, a
curl handle can be also passed here under the name handle.

license Character: license restrictions. By default, data from resources allow-
ing "academic" use is returned by OmniPath. If you use the data for work
in a company, you can provide "commercial” or "for-profit", which will re-
strict the data to those records which are supported by resources that allow
for-profit use.

password Character: password for the OmniPath web service. You can pro-
vide a special password here which enables the use of ‘license = "ignore"*
option, completely bypassing the license filter.

exclude Character vector: resource or dataset names to be excluded. The data
will be filtered after download to remove records of the excluded datasets
and resources.

json_param List: parameters to pass to the ‘jsonlite::fromJSON‘ when pro-
cessing JSON columns embedded in the downloaded data. Such columns
are "extra_attrs" and "evidences". These are optional columns which pro-
vide a lot of extra details about interactions.

strict_evidences Logical: reconstruct the "sources" and "references" columns
of interaction data frames based on the "evidences" column, strictly filtering
them to the queried datasets and resources. Without this, the "sources" and
"references" fields for each record might contain information for datasets
and resources other than the queried ones, because the downloaded records
are a result of a simple filtering of an already integrated data frame.

genesymbol_resource Character: "uniprot" (default) or "ensembl". The Om-
niPath web service uses the primary gene symbols as provided by UniProt.
By passing "ensembl" here, the UniProt gene symbols will be replaced by

intercell_categories 93

the ones used in Ensembl. This translation results in a loss of a few records,
and multiplication of another few records due to ambiguous translation.

cache Logical: use caching, load data from and save to the. The cache directory
by default belongs to the user, located in the user’s default cache directory,
and named "OmnipathR". Find out about it by getOption(”omnipathr.cachedir").
Can be changed by omnipath_set_cachedir.

Value

A data frame of intercellular communication roles.

See Also

e intercell_network

e intercell_consensus_filter

» filter_intercell

e intercell_categories

e intercell_generic_categories
* intercell_resources

e intercell_summary

e intercell_network

Examples

ecm_proteins <- intercell(categories = "ecm")

intercell_categories Categories in the intercell database of OmniPath

Description

Retrieves a list of categories from https://omnipathdb.org/intercell.

Usage

intercell_categories()

Value

character vector with the different intercell categories

See Also

e intercell
* intercell_generic_categories
e intercell_summary

https://omnipathdb.org/intercell

94

Examples

intercell_consensus_filter

intercell_categories()

intercell_consensus_filter

Quality filter for intercell annotations

Description

Quality filter for intercell annotations

Usage

intercell_consensus_filter(

data,

percentile =

NULL,

loc_percentile = NULL,
topology = NULL

Arguments

data

percentile

loc_percentile

topology

Value

A data frame with intercell annotations, as provided by intercell.

Numeric: a percentile cut off for the consensus score of composite categories.
The consensus score is the number of resources supporting the classification
of an entity into a category based on combined information of many resources.
Here you can apply a cut-off, keeping only the annotations supported by a higher
number of resources than a certain percentile of each category. If NULL no filter-
ing will be performed. The value is either in the 0-1 range, or will be divided by
100 if greater than 1. The percentiles will be calculated against the generic com-
posite categories and then will be applied to their resource specific annotations
and specific child categories.

Numeric: similar to percentile for major localizations. For example, with a
value of 50, the secreted, plasma membrane transmembrane or peripheral at-
tributes will be TRUE only where at least 50 percent of the resources support
these.

Character vector: list of allowed topologies, possible values are *"secreted"*,
"plasma_membrane_peripheral" and *"plasma_membrane_transmembrane"*.

The data frame in data filtered by the consensus scores.

intercell_generic_categories

See Also

resources
intercell

filter_intercell
intercell_categories
intercell_generic_categories
intercell_resources
intercell_summary
intercell_network

Examples

ligand_receptor <- intercell(parent = c("ligand”, "receptor"”))

nrow(ligand_receptor)
[1] 50174

1r_qg50 <- intercell_consensus_filter(ligand_receptor, 50)

nrow(lr_qg50)
[1] 42863

95

intercell_generic_categories
Retrieves a list of the generic categories in the intercell database of

OmniPath

Description

Retrieves a list of the generic categories from https://omnipathdb.org/intercell.

Usage

intercell_generic_categories()

Value

character vector with the different intercell main classes

See Also

e intercell

e intercell_categories

e intercell_summary

Examples

intercell_generic_categories()

https://omnipathdb.org/intercell

96

intercell_network

intercell_network

Intercellular communication network

Description

Imports an intercellular network by combining intercellular annotations and protein interactions.
First imports a network of protein-protein interactions. Then, it retrieves annotations about the pro-
teins intercellular communication roles, once for the transmitter (delivering information from the
expressing cell) and second, the receiver (receiving signal and relaying it towards the expressing
cell) side. These 3 queries can be customized by providing parameters in lists which will be passed
to the respective methods (omnipath_interactions for the network and intercell for the anno-
tations). Finally the 3 data frames combined in a way that the source proteins in each interaction
annotated by the transmitter, and the target proteins by the receiver categories. If undirected inter-
actions present (these are disabled by default) they will be duplicated, i.e. both partners can be both

receiver and transmitter.

Usage

intercell_network(
interactions_param
transmitter_param

= list(),
list(),

receiver_param = list(),
resources = NULL,
entity_types = NULL,
ligand_receptor = FALSE,
high_confidence = FALSE,
simplify = FALSE,
unique_pairs = FALSE,
consensus_percentile = NULL,
loc_consensus_percentile = NULL,
omnipath = TRUE,

ligrecextra = TRUE,

kinaseextra = !high_confidence,
pathwayextra = !'high_confidence,
Arguments

interactions_param

a list with arguments for an interactions query; omnipath-interactions.

transmitter_param

a list with arguments for intercell, to define the transmitter side of intercellu-

lar connections

connections

receiver_param a list with arguments for intercell, to define the receiver side of intercellular

intercell _network

resources

entity_types

ligand_receptor

high_confidence

simplify

unique_pairs

97

A character vector of resources to be applied to both the interactions and the an-
notations. For example, resources = 'CellChatDB' will download the trans-
mitters and receivers defined by CellChatDB, connected by connections from
CellChatDB.

Character, possible values are "protein", "complex" or both.

Logical. If TRUE, only ligand and receptor annotations will be used instead of
the more generic transmitter and receiver categories.

Logical: shortcut to do some filtering in order to include only higher confi-
dence interactions. The intercell database of OmniPath covers a very broad
range of possible ways of cell to cell communication, and the pieces of infor-
mation, such as localization, topology, function and interaction, are combined
from many, often independent sources. This unavoidably result some weird and
unexpected combinations which are false positives in the context of intercellular
communication. This option sets some minimum criteria to remove most (but
definitely not all!) of the wrong connections. These criteria are the followings:
1) the receiver must be plasma membrane transmembrane; 2) the curation effort
for interactions must be larger than one; 3) the consensus score for annotations
must be larger than the 50 percentile within the generic category (you can over-
ride this by consensus_percentile). 4) the transmitter must be secreted or
exposed on the plasma membrane. 5) The major localizations have to be sup-
ported by at least 30 percent of the relevant resources (you can override this
by loc_consensus_percentile). 6) The datasets with lower level of curation
(kinaseextra and pathwayextra) will be disabled. These criteria are of medium
stringency, you can always tune them to be more relaxed or stringent by filtering
manually, using filter_intercell_network.

Logical: keep only the most often used columns. This function combines a
network data frame with two copies of the intercell annotation data frames, all
of them already having quite some columns. With this option we keep only the
names of the interacting pair, their intercellular communication roles, and the
minimal information of the origin of both the interaction and the annotations.
Logical: instead of having separate rows for each pair of annotations, drop
the annotations and reduce the data frame to unique interacting pairs. See
unique_intercell_network for details.

consensus_percentile

Numeric: a percentile cut off for the consensus score of generic categories in
intercell annotations. The consensus score is the number of resources supporting
the classification of an entity into a category based on combined information of
many resources. Here you can apply a cut-off, keeping only the annotations
supported by a higher number of resources than a certain percentile of each
category. If NULL no filtering will be performed. The value is either in the O-
1 range, or will be divided by 100 if greater than 1. The percentiles will be
calculated against the generic composite categories and then will be applied to
their resource specific annotations and specific child categories.

loc_consensus_percentile

Numeric: similar to consensus_percentile for major localizations. For ex-
ample, with a value of 50, the secreted, plasma membrane transmembrane or

98 intercell_network
peripheral attributes will be TRUE only where at least 50 percent of the resources
support these.

omnipath Logical: shortcut to include the omnipath dataset in the interactions query.

ligrecextra Logical: shortcut to include the ligrecextra dataset in the interactions query.

kinaseextra Logical: shortcut to include the kinaseextra dataset in the interactions query.

pathwayextra Logical: shortcut to include the pathwayextra dataset in the interactions query.
If simplify or unique_pairs is TRUE, additional column names can be passed
here to dplyr: :select on the final data frame. Otherwise ignored.

Details

By default this function creates almost the largest possible network of intercellular interactions.
However, this might contain a large number of false positives. Please refer to the documentation
of the arguments, especially high_confidence, and the filter_intercell_network function.
Note: if you restrict the query to certain intercell annotation resources or small categories, it’s not
recommended to use the consensus_percentile or high_confidence options, instead filter the
network with filter_intercell_network for more consistent results.

Value

A dataframe containing information about protein-protein interactions and the inter-cellular roles
of the protiens involved in those interactions.

See Also

e intercell

e intercell_summary

e intercell_categories

e intercell_generic_categories

e intercell

e omnipath

* pathwayextra

* kinaseextra

e ligrecextra

e unique_intercell_network

e simplify_intercell_network

» filter_intercell_network

Examples
intercell_network <- intercell_network(

interactions_param = list(datasets = 'ligrecextra'),
receiver_param = list(categories = c('receptor', 'transporter')),
transmitter_param = list(categories = c('ligand', 'secreted_enzyme'))

intercell_resources

99

intercell_resources Retrieves a list of intercellular communication resources available in

OmniPath

Description

Retrieves a list of the databases from https://omnipathdb.org/intercell.

Usage

intercell_resources(dataset = NULL)

Arguments

dataset ignored at this query type

Value

character vector with the names of the databases

See Also

resources

intercell

filter_intercell
intercell_categories
intercell_generic_categories
intercell_summary

intercell_network

Examples

intercell_resources()

https://omnipathdb.org/intercell

100

is_ontology_id

intercell_summary

Full list of intercell categories and resources

Description

Full list of intercell categories and resources

Usage

intercell_summary()

Value

A data frame of categories and resources.

Examples

ic_cat <- intercell_categories()

database

<chr>
UniProt_location
UniProt_topology
UniProt_keyword

transmembrane_predicted Phobius

ic_cat

A tibble: 1,125 x 3

category parent

<chr> <chr>

1 transmembrane transmembrane
2 transmembrane transmembrane
3 transmembrane transmembrane
4 transmembrane

5 transmembrane_phobius

. with 1,120 more rows

transmembrane_predicted Almen2009

is_ontology_id

Looks like an ontology ID

Description

Tells if the input has the typical format of ontology IDs, i.e. a code of capital letters, a colon,
followed by a numeric code.

Usage

is_ontology_id(terms)

Arguments

terms

Character vector with strings to check.

is_swissprot

Value

A logical vector with the same length as the input.

Examples

is_ontology_id(c('G0:0000001', 'reproduction'))
[1] TRUE FALSE

101

is_swissprot Check for SwissProt IDs

Description

Check for SwissProt IDs

Usage

is_swissprot(uniprots, organism = 9606)

Arguments

uniprots Character vector of UniProt IDs.

organism Character or integer: name or identifier of the organism.
Value

Logical vector TRUE for SwissProt IDs and FALSE for any other element.

Examples

is_swissprot(c(”Q@5BL1", "A@A654IBU3”, "P00533"))
[1]1 FALSE FALSE TRUE

102

is_uniprot

is_trembl Check for TrEMBL IDs

Description

Check for TTEMBL IDs

Usage

is_trembl(uniprots, organism = 9606)

Arguments

uniprots Character vector of UniProt IDs.

organism Character or integer: name or identifier of the organism.
Value

Logical vector TRUE for TrTEMBL IDs and FALSE for any other element.

Examples

is_trembl(c(”Q@5BL1", "A@A654IBU3”, "P00533"))
[1]1 TRUE TRUE FALSE

is_uniprot Looks like a UniProt ID?

Description

This function checks only the format of the IDs, no guarantee that these IDs exist in UniProt.

Usage

is_uniprot(identifiers)

Arguments
identifiers Character: one or more identifiers (typically a single string, a vector or a data
frame column).
Value

Logical: true if all elements in the input (except NAs) looks like valid UniProt IDs. If the input is

not a character vector, ‘FALSE" is returned.

kegg_api_templates

Examples

is_uniprot(all_uniprot_acs())
[1] TRUE
is_uniprot("P@@533")

[1] TRUE
is_uniprot("pizza")

[1] FALSE

103

kegg_api_templates List of templates in the KEGG REST API

Description

List of templates in the KEGG REST API

Usage
kegg_api_templates()

Value

A list of KEGG API templates.

Examples

kegg_api_templates()

kegg_conv Convert KEGG identifiers to/from outside identifiers

Description

See https://www.kegg. jp/kegg/rest/keggapi.html#conv for details.

Usage
kegg_conv(...)

Arguments

Arguments passed on to kegg_query

operation Character: one of the KEGG REST API operations.

https://www.kegg.jp/kegg/rest/keggapi.html#conv

104

Value

Data frame (tibble) of two columns with names "id_a" and "id_b".

kegg ddi

Examples
kegg_conv("compound”, "pubchem")
kegg_databases List of databases (endpoints) in the KEGG REST API
Description

List of databases (endpoints) in the KEGG REST API

Usage
kegg_databases()

Value

A character vector of KEGG databases.

Examples

kegg_databases()

kegg_ddi Find adverse drug-drug interactions in KEGG

Description

See https://www.kegg. jp/kegg/rest/keggapi.html#ddi for details.

Usage
kegg_ddi(...)

Arguments

Arguments passed on to kegg_query

operation Character: one of the KEGG REST API operations.

https://www.kegg.jp/kegg/rest/keggapi.html#ddi

kegg_ find 105

Value
Data frame (tibble) of four columns with names "drug_a", "drug_b", "interaction" and "mecha-
nism".

Examples

kegg_ddi(c("DO0564", "DO@100", "DOO109"))

kegg_find Find entries in KEGG with matching query keyword or other query
data

Description

See https://www.kegg. jp/kegg/rest/keggapi.html#find for details.

Usage

kegg_find(...)

Arguments

Arguments passed on to kegg_query

operation Character: one of the KEGG REST API operations.

Value

Data frame (tibble) of two columns with names "id" and "value".

Examples

kegg_find("genes"”, "shiga toxin")

https://www.kegg.jp/kegg/rest/keggapi.html#find

106 kegg link

kegg_info Information about a KEGG Pathway

Description

Information about a KEGG Pathway

Usage
kegg_info(pathway_id)

Arguments
pathway_id Character: a KEGG Pathway identifier, e.g. "hsa04710". For a complete list of
IDs see kegg_pathway_list.
Value

List with the pathway information.

See Also

e kegg_pathway_list
* kegg_picture
* kegg_open

Examples

kegg_info('map00563"')

kegg_link Find related KEGG entries by using database cross-references

Description

See https://www.kegg. jp/kegg/rest/keggapi.html#1link for details.

Usage
kegg_link(...)

Arguments

Arguments passed on to kegg_query
operation Character: one of the KEGG REST API operations.

https://www.kegg.jp/kegg/rest/keggapi.html#link

kegg_list 107

Value

Data frame (tibble) of two columns with names "id_a" and "id_b".

Examples

kegg_link("pathway”, "hsa")

kegg_list Obtain a list of KEGG entry identifiers and associated names

Description

See https://www.kegg. jp/kegg/rest/keggapi.html#list for details.

Usage
kegg_list(...)

Arguments

Arguments passed on to kegg_query

operation Character: one of the KEGG REST API operations.

Value
Data frame (tibble) of two columns with names "id" and "name"; except if the <database> argument

is "organism", which results a four columns data frame.

Examples

kegg_list("pathway")

kegg_open Open a KEGG Pathway diagram in the browser

Description

Open a KEGG Pathway diagram in the browser

Usage
kegg_open(pathway_id)

https://www.kegg.jp/kegg/rest/keggapi.html#list

108 kegg_operations

Arguments
pathway_id Character: a KEGG Pathway identifier, e.g. "hsa04710". For a complete list of
IDs see kegg_pathway_list.
Details

To open URLs in the web browser the "browser" option must to be set to a a valid executable. You
can check the value of this option by getOption("browser”). If your browser is firefox and the
executable is located in the system path, you can set the option to point to it: options(browser =
"firefox"). To make it a permanent setting, you can also include this in your .Rprofile file.

Value

Returns NULL.

See Also

* kegg_pathway_list
e kegg_picture

* kegg_info
Examples
if(any(getOption('browser') != '")) kegg_open('hsa04710')
kegg_operations List of operations in the KEGG REST API
Description

List of operations in the KEGG REST API

Usage

kegg_operations()

Value

A character vector of KEGG operations.

Examples

kegg_operations()

kegg organisms

109

kegg_organisms List of organisms in KEGG
Description
List of organisms in KEGG
Usage

kegg_organisms()

Value

A data frame (tibble) with organism data.

Examples

kegg_organisms()

kegg_organism_codes All 3 letter organism code from KEGG

Description

All 3 letter organism code from KEGG

Usage

kegg_organism_codes()

Value

A character vector with all 3 letter codes.

Examples

kegg_organism_codes()

110 kegg pathways_download

kegg_pathways_download
Download the KEGG Pathways database

Description

Downloads all pathway diagrams in the KEGG Pathways database in KGML format and processes
the XML to extract the interactions.

Usage
kegg_pathways_download(max_expansion = NULL, simplify = FALSE)

Arguments

max_expansion Numeric: the maximum number of relations derived from a single relation
record. As one entry might represent more than one molecular entities, one
relation might yield a large number of relations in the processing. This happens
in a combinatorial way, e.g. if the two entries represent 3 and 4 entities, that
results 12 relations. If NULL, all relations will be expanded.

simplify Logical: remove KEGG’s internal identifiers and the pathway annotations, keep
only unique interactions with direction and effect sign.
Value

A data frame (tibble) of interactions.

See Also

* kegg_pathway_list
* kegg_process

* kegg_pathway_download

Examples
Not run:
kegg_pw <- kegg_pathways_download(simplify = TRUE)
kegg_pw
A tibble: 6,765 x 6
uniprot_source uniprot_target type effect genesymbol_source
<chr> <chr> <chr> <chr> <chr>
1 Q03113 Q15283 PPrel activ. GNA12
2 Q9Y4G8 P62070 PPrel activ. RAPGEF2
3 Q13972 P62070 PPrel activ. RASGRF1
4 095267 P62070 PPrel activ. RASGRP1
5 P62834 P15056 PPrel activ. RAP1A
. with 6,760 more rows, and 1 more variable: genesymbol_target <chr>

kegg pathway_annotations

End(Not run)

kegg_pathway_annotations
Protein pathway annotations

Description

Downloads all KEGG pathways and creates a table of protein-pathway annotations.

Usage

kegg_pathway_annotations(pathways = NULL)

Arguments

pathways A table of KEGG pathways as produced by kegg_pathways_download.

Value

A data frame (tibble) with UniProt IDs and pathway names.

See Also

kegg_pathways_download

Examples

Not run:

kegg_pw_annot <- kegg_pathway_annotations()
kegg_pw_annot

A tibble: 7,341 x 4

uniprot genesymbol pathway pathway_id
<chr> <chr> <chr> <chr>

1 Q03113 GNA12 MAPK signaling pathway hsa04010
2 Q9Y4G8 RAPGEF2 MAPK signaling pathway hsa04010
3 Q13972 RASGRF1 MAPK signaling pathway hsa04010
4 095267 RASGRP1 MAPK signaling pathway hsa04010
5 P62834 RAP1A MAPK signaling pathway hsa04010
. with 7,336 more rows

End(Not run)

112 kegg pathway_download

kegg_pathway_download Download one KEGG pathway

Description

Downloads one pathway diagram from the KEGG Pathways database in KGML format and pro-
cesses the XML to extract the interactions.

Usage

kegg_pathway_download(
pathway_id,
process = TRUE,
max_expansion = NULL,
simplify = FALSE

)
Arguments
pathway_id Character: a KEGG pathway identifier, for example "hsa04350".
process Logical: process the data or return it in raw format. processing means joining

the entries and relations into a single data frame and adding UniProt IDs.

max_expansion Numeric: the maximum number of relations derived from a single relation
record. As one entry might represent more than one molecular entities, one
relation might yield a large number of relations in the processing. This happens
in a combinatorial way, e.g. if the two entries represent 3 and 4 entities, that
results 12 relations. If NULL, all relations will be expanded.

simplify Logical: remove KEGG’s internal identifiers and the pathway annotations, keep
only unique interactions with direction and effect sign.

Value

A data frame (tibble) of interactions if process is TRUE, otherwise a list with two data frames:
"entries" is a raw table of the entries while "relations" is a table of relations extracted from the
KGML file.

See Also

* kegg_process
* kegg_pathways_download
* kegg_pathway_list

kegg pathway_list

Examples

tgf_pathway <- kegg_pathway_download('hsa04350"')

tgf_pathway

A tibble:
source target type
<chr> <chr> <chr>

#

* % o
g A w N =

#

#
#
#

51
57
34
20
60

49
55
32
17
46

50 x 12

PPrel
PPrel
PPrel
PPrel
PPrel

effect
<chr>

activ.
activ.
activ.
activ.
activ.

arrow relation_id kegg_id_source

<chr> <chr>

--> hsa04350:1
--> hsa04350:2
--> hsa04350:3
--> hsa04350:4
--> hsa04350:5

<chr>

hsa
hsa
hsa
hsa
hsa

genesymbol_target <chr>, uniprot_target <chr>

17040 hsa:.
1151449 hs.
:3624 hsa:.
14838

14086 hsa:.

. with 45 more rows, and 5 more variables: genesymbol_source <chr>,
uniprot_source <chr>, kegg_id_target <chr>,

113

kegg_pathway_list

List of KEGG pathways

Description

Retrieves a list of available KEGG pathways.

Usage

kegg_pathway_list()

Value

Data frame of pathway names and identifiers.

See Also

kegg_process

kegg_pathway_download

kegg_pathways_download

kegg_open

kegg_picture

kegg_info

Examples

kegg_pws <- kegg_pathway_list()
kegg_pws
A tibble:

#
#

id
<chr>

521 x 2
name
<chr>

114 kegg picture

map@1100 Metabolic pathways

map@1110 Biosynthesis of secondary metabolites
map@1120@ Microbial metabolism in diverse environments
map@1200 Carbon metabolism

map@1210@ 2-Oxocarboxylic acid metabolism

map@1212 Fatty acid metabolism

map@1230 Biosynthesis of amino acids

. with 514 more rows

e R
~N o O W=

kegg_picture Download a pathway diagram as a picture

Description

Downloads a KEGG Pathway diagram as a PNG image.

Usage

kegg_picture(pathway_id, path = NULL)

Arguments
pathway_id Character: a KEGG Pathway identifier, e.g. "hsa04710". For a complete list of
IDs see kegg_pathway_list.
path Character: save the image to this path. If NULL, the image will be saved in the
current directory under the name <pathway_id>.png.
Value

Invisibly returns the path to the downloaded file.

See Also

kegg_pathway_list

e kegg_pathway_list
* kegg_open
e kegg_info

Examples

kegg_picture('hsa04710"')
kegg_picture('hsa04710', path = 'foo/bar')
kegg_picture('hsa04710', path = 'foo/bar/circadian.png')

kegg_process

115

kegg_process

Interactions from KGML

Description

Processes KEGG Pathways data extracted from a KGML file. Joins the entries and relations into a
single data frame and translates the Gene Symbols to UniProt IDs.

Usage

kegg_process(entries, relations, max_expansion = NULL, simplify = FALSE)

Arguments

entries
relations

max_expansion

simplify

Value

A data frames with entries extracted from a KGML file by kegg_pathway_download.
A data frames with relations extracted from a KGML file by kegg_pathway_download.

Numeric: the maximum number of relations derived from a single relation
record. As one entry might represent more than one molecular entities, one
relation might yield a large number of relations in the processing. This happens
in a combinatorial way, e.g. if the two entries represent 3 and 4 entities, that
results 12 relations. If NULL, all relations will be expanded.

Logical: remove KEGG’s internal identifiers and the pathway annotations, keep
only unique interactions with direction and effect sign.

A data frame (tibble) of interactions. In rare cases when a pathway doesn’t contain any relation,

returns NULL.

See Also

* kegg_pathway_download

* kegg_pathways_download

e kegg_pathway_list

Examples

hsa04350 <- kegg_pathway_download('hsa@4350', process = FALSE)
tgf_pathway <- kegg_process(hsa04350$entries, hsa04350$relations)

tgf_pathway

A tibble: 50 x 12

source target type effect arrow relation_id kegg_id_source
<chr> <chr> <chr> <chr> <chr> <chr> <chr>

151 49 PPrel activ. --> hsa04350:1 hsa:7040 hsa:.
2 57 55 PPrel activ. --> hsa@4350:2 hsa:151449 hs.
3 34 32 PPrel activ. --> hsa04350:3 hsa:3624 hsa:.
4 20 17 PPrel activ. --> hsa04350:4 hsa:4838

116 kegg query

5 60 46 PPrel activ. --> hsa@4350:5 hsa:4086 hsa:.

. with 45 more rows, and 5 more variables: genesymbol_source <chr>,
uniprot_source <chr>, kegg_id_target <chr>,

genesymbol_target <chr>, uniprot_target <chr>

kegg_query Compile a query for the KEGG REST API

Description

Compile a query for the KEGG REST API

Usage
kegg_query(operation, ...)
Arguments
operation Character: one of the KEGG REST API operations.
Arguments for the API operation, as defined in the templates available by kegg_api_templates
and in the page https://www.kegg. jp/kegg/rest/keggapi.html.
Value

A list with the following elements:

* operation - The KEGG API operation.
* names - The names of the arguments.
 query - The values of the arguments.

e error - Error messages.

» complete - Whether the query has all mandatory arguments.

Raises an error if fails to successfully compile a valid query.

Examples

kegg_query("conv", "compound”, "pubchem")

https://www.kegg.jp/kegg/rest/keggapi.html

kegg_request 117

kegg_request Perform a KEGG REST API request

Description

Perform a KEGG REST API request

Usage
kegg_request(operation, ...)
Arguments
operation Character: one of the KEGG REST API operations.
Arguments for the API operation, as defined in the templates available by kegg_api_templates
and in the page https://www.kegg. jp/kegg/rest/keggapi.html.
Value

List or data frame: the data retrieved from the KEGG REST API.

Examples
kegg_request("”conv”, "compound”, "pubchem")
kegg_rm_prefix Remove prefix from KEGG foreign database identifiers
Description

Remove prefix from KEGG foreign database identifiers

Usage
kegg_rm_prefix(data, ..., .to_names = TRUE)
Arguments
data A data frame (tibble) with identifier column(s).
Columns where the prefixes should be removed, as a tidyselect selection. If
empty, everything() is used to select all columns.
.to_names Logical: if TRUE, the column names will be updated to reflect the removed pre-

fixes.

https://www.kegg.jp/kegg/rest/keggapi.html

118 latin_name

Value

A data frame (tibble) with the prefixes removed.

Examples

kegg_rm_prefix(kegg_conv(”"ncbi-geneid”, "hsa"))

latin_name Latin (scientific) names of organisms

Description

Latin (scientific) names of organisms

Usage

latin_name(name)

Arguments

name Vector with any kind of organism name or identifier, can be also mixed type.

Value

Character vector with latin (scientific) names, NA if a name in the input could not be found.

See Also

e ncbi_taxid
e common_name

e ensembl_name

Examples

latin_name(c (9606, "cat", "dog"))

[1] "Homo sapiens” "Felis catus” "Canis lupus familiaris”
latin_name(c(9606, "cat”, "doggy"))

[1] "Homo sapiens” "Felis catus” NA

load_db 119

load_db Load a built in database

Description

Load a built in database

Usage

load_db(key, param = 1list())

Arguments
key Character: the key of the database to load. For a list of available keys see
omnipath_show_db.
param List: override the defaults or pass further parameters to the database loader func-
tion. See the loader functions and their default parameters in omnipath_show_db.
Details

This function loads a database which is stored within the package namespace until its expiry. The
loaded database is accessible by get_db and the loading process is typically initiated by get_db,
not by the users directly.

Value

Returns NULL.

See Also

omnipath_show_db, get_db

Examples

load_db('go_slim')
omnipath_show_db()

120 metalinksdb_table

metalinksdb_sqlite Open MetalinksDB as an SQLite3 connection

Description

MetalinksDB is a database of metabolite-protein and small molecule ligand-receptor interactions.

Usage
metalinksdb_sqlite()

Value

An SQLite3 connection.

Examples

con <- metalinksdb_sqglite()
con

metalinksdb_table A table from MetalinksDB

Description

A table from MetalinksDB

Usage

metalinksdb_table(name)

Arguments

name Character. The name of the MetalinksDB table to fetch.

Value

A data frame (tibble) of one table from the MetalinksDB SQLite database.

See Also
* metalinksdb_sqlite
e metalinksdb_tables

Examples

metalinksdb_table('pathway')

metalinksdb_tables 121

metalinksdb_tables List tables in MetalinksDB

Description

List tables in MetalinksDB

Usage

metalinksdb_tables()

Value

Character vector of table names in the MetalinksDB SQLite database.

See Also

e metalinksdb_sqglite

Examples

metalinksdb_tables()

ncbi_taxid NCBI Taxonomy IDs of organisms

Description

NCBI Taxonomy IDs of organisms

Usage

ncbi_taxid(name)

Arguments

name Vector with any kind of organism name or identifier, can be also mixed type.

Value

Integer vector with NCBI Taxonomy IDs, NA if a name in the input could not be found.

122 nichenet_build_model

See Also

e latin_name
* common_name

e ensembl_name

Examples

n

ncbi_taxid(c("Homo sapiens”, "cat”, "dog"))
[1] 9606 9685 9615
ncbi_taxid(c(9606, "cat", "doggy"))

[1] 9606 9685 NA

nichenet_build_model Construct a NicheNet ligand-target model

Description

Construct a NicheNet ligand-target model

Usage

nichenet_build_model (optimization_results, networks, use_weights = TRUE)

Arguments

optimization_results
The outcome of NicheNet parameter optimization as produced by nichenet_optimization.

networks A list with NicheNet format signaling, ligand-receptor and gene regulatory net-
works as produced by nichenet_networks.
use_weights Logical: whether to use the optimized weights.
Value

A named list with two elements: ‘weighted_networks* and ‘optimized_parameters*.

Examples

Not run:

expression <- nichenet_expression_data()

networks <- nichenet_networks()

optimization_results <- nichenet_optimization(networks, expression)
nichenet_model <- nichenet_build_model (optimization_results, networks)

End(Not run)

nichenet_expression_data 123

nichenet_expression_data

Expression data from ligand-receptor perturbation experiments used
by NicheNet

Description

NicheNet uses expression data from a collection of published ligand or receptor KO or perturbation
experiments to build its model. This function retrieves the original expression data, deposited in
Zenodo (https://zenodo.org/record/3260758).

Usage

nichenet_expression_data()

Value

Nested list, each element contains a data frame of processed expression data and key variables about
the experiment.

Examples

exp_data <- nichenet_expression_data()

head(names(exp_data))

[1] "bmp4_tgfb” "tgfb_bmp4” "nodal_Nodal” "spectrum_I14"
[5] "spectrum_Tnf" "spectrum_Ifng”

purrr::map_chr(head(exp_data), 'from')

bmp4_tgfb tgfb_bmp4 nodal_Nodal spectrum_I14 spectrum_Tnf
"BMP4" "TGFB1" "NODAL" "IL4" "TNF"
spectrum_Ifng

"IFNG"

nichenet_gr_network Builds a NicheNet gene regulatory network

Description

Builds gene regulatory network prior knowledge for NicheNet using multiple resources.

https://zenodo.org/record/3260758

124 nichenet_gr_network

Usage

nichenet_gr_network(
omnipath = list(),
harmonizome = list(),
regnetwork = list(),
htridb = list(),
remap = list(),
evex = list(),
pathwaycommons = list(),
trrust = list(),
only_omnipath = FALSE

)

Arguments
omnipath List with paramaters to be passed to nichenet_gr_network_omnipath.
harmonizome List with paramaters to be passed to nichenet_gr_network_harmonizome.
regnetwork List with paramaters to be passed to nichenet_gr_network_regnetwork.
htridb List with paramaters to be passed to nichenet_gr_network_htridb.
remap List with paramaters to be passed to nichenet_gr_network_remap.
evex List with paramaters to be passed to nichenet_gr_network_evex.

pathwaycommons List with paramaters to be passed to nichenet_gr_network_pathwaycommons.
trrust List with paramaters to be passed to nichenet_gr_network_trrust.

only_omnipath Logical: a shortcut to use only OmniPath as network resource.

Value

A network data frame (tibble) with gene regulatory interactions suitable for use with NicheNet.

See Also

* nichenet_gr_network_evex

* nichenet_gr_network_harmonizome

* nichenet_gr_network_htridb

* nichenet_gr_network_omnipath

e nichenet_gr_network_pathwaycommons
* nichenet_gr_network_regnetwork

e nichenet_gr_network_remap

* nichenet_gr_network_trrust

nichenet_gr_network_evex 125

Examples

load everything with the default parameters:
gr_network <- nichenet_gr_network()

less targets from ReMap, not using RegNetwork:
gr_network <- nichenet_gr_network(
I needed to disable ReMap here due to some issues
of one of the Bioconductor build servers
remap = list(top_targets = 200),
remap = NULL,
regnetwork = NULL,
)

use only OmniPath:
gr_network_omnipath <- nichenet_gr_network(only_omnipath = TRUE)

nichenet_gr_network_evex
NicheNet gene regulatory network from EVEX

Description

Builds a gene regulatory network using data from the EVEX database and converts it to a format
suitable for NicheNet.

Usage

nichenet_gr_network_evex(
top_confidence = 0.75,
indirect = FALSE,
regulation_of_expression = FALSE

Arguments

top_confidence Double, between 0 and 1. Threshold based on the quantile of the confidence
score.

indirect Logical: whether to include indirect interactions.
regulation_of_expression

Logical: whether to include also the "regulation of expression" type interactions.

Value

Data frame of interactions in NicheNet format.

Data frame with gene regulatory interactions in NicheNet format.

126 nichenet_gr_network_harmonizome

See Also

* nichenet_gr_network

e evex_download

Examples

use only the 10% with the highest confidence:
evex_gr_network <- nichenet_gr_network_evex(top_confidence = .9)

nichenet_gr_network_harmonizome
NicheNet gene regulatory network from Harmonizome

Description

Builds gene regulatory network prior knowledge for NicheNet using Harmonizome

Usage
nichenet_gr_network_harmonizome(
datasets = c("cheappi”, "encodetfppi”, "jasparpwm”, "transfac"”, "transfacpwm”,
"motifmap”, "geotf", "geokinase", "geogene"),
)
Arguments
datasets The datasets to use. For possible values please refer to default value and the
Harmonizome webpage.
Ignored.
Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

* nichenet_gr_network

¢ harmonizome_download

Examples

use only JASPAR and TRANSFAC:
hz_gr_network <- nichenet_gr_network_harmonizome(
datasets = c('jasparpwm', 'transfac', 'transfacpwm')

nichenet_gr_network_htridb 127

nichenet_gr_network_htridb
NicheNet gene regulatory network from HTRIdb

Description
Builds a gene regulatory network using data from the HTRIdb database and converts it to a format
suitable for NicheNet.

Usage

nichenet_gr_network_htridb()

Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

htridb_download, nichenet_gr_network

Examples

htri_gr_network <- nichenet_gr_network_htridb()

nichenet_gr_network_omnipath
Builds gene regulatory network for NicheNet using OmniPath

Description

Retrieves network prior knowledge from OmniPath and provides it in a format suitable for Nich-
eNet. This method never downloads the ‘ligrecextra® dataset because the ligand-receptor interac-
tions are supposed to come from nichenet_lr_network_omnipath.

Usage

nichenet_gr_network_omnipath(min_curation_effort = @, ...)

Arguments

min_curation_effort
Lower threshold for curation effort

Passed to import_transcriptional_interactions

128 nichenet_gr_network_pathwaycommons

Value

A network data frame (tibble) with gene regulatory interactions suitable for use with NicheNet.

See Also

* nichenet_gr_network_evex

* nichenet_gr_network_harmonizome

* nichenet_gr_network_htridb

* nichenet_gr_network_omnipath

* nichenet_gr_network_pathwaycommons
* nichenet_gr_network_regnetwork

e nichenet_gr_network_remap

e nichenet_gr_network_trrust

Examples

use interactions up to confidence level "C" from DoRothEA:

op_gr_network <- nichenet_gr_network_omnipath(
dorothea_levels = c('A', 'B', 'C")

)

nichenet_gr_network_pathwaycommons
NicheNet gene regulatory network from PathwayCommons

Description

Builds gene regulation prior knowledge for NicheNet using PathwayCommons.

Usage
nichenet_gr_network_pathwaycommons(
interaction_types = "controls-expression-of”,
)
Arguments

interaction_types
Character vector with PathwayCommons interaction types. Please refer to the
default value and the PathwayCommons webpage.

Ignored.

nichenet_gr_network_regnetwork 129

Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

* nichenet_gr_network

* pathwaycommons_download

Examples

pc_gr_network <- nichenet_gr_network_pathwaycommons()

nichenet_gr_network_regnetwork
NicheNet gene regulatory network from RegNetwork

Description

Builds a gene regulatory network using data from the RegNetwork database and converts it to a
format suitable for NicheNet.
Usage

nichenet_gr_network_regnetwork()

Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

* regnetwork_download

* nichenet_gr_network

Examples

regn_gr_network <- nichenet_gr_network_regnetwork()

130 nichenet_gr_network_remap

nichenet_gr_network_remap
NicheNet gene regulatory network from ReMap

Description

Builds a gene regulatory network using data from the ReMap database and converts it to a format
suitable for NicheNet.

Usage

nichenet_gr_network_remap(
score = 100,
top_targets = 500,
only_known_tfs = TRUE

)
Arguments
score Numeric: a minimum score between 0 and 1000, records with lower scores will
be excluded. If NULL no filtering performed.
top_targets Numeric: the number of top scoring targets for each TF. Essentially the maxi-

mum number of targets per TF. If NULL the number of targets is not restricted.

only_known_tfs Logical: whether to exclude TFs which are not in TF census.

Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

e remap_filtered

e nichenet_gr_network

Examples

use only max. top 100 targets for each TF:
remap_gr_network <- nichenet_gr_network_remap(top_targets = 100)

nichenet_gr_network_trrust 131

nichenet_gr_network_trrust
NicheNet gene regulatory network from TRRUST

Description
Builds a gene regulatory network using data from the TRRUST database and converts it to a format
suitable for NicheNet.

Usage

nichenet_gr_network_trrust()

Value

Data frame with gene regulatory interactions in NicheNet format.

See Also

e trrust_download

* nichenet_gr_network

Examples

trrust_gr_network <- nichenet_gr_network_trrust()

nichenet_ligand_activities
Calls the NicheNet ligand activity analysis

Description

Calls the NicheNet ligand activity analysis

Usage

nichenet_ligand_activities(
ligand_target_matrix,
1r_network,
expressed_genes_transmitter,
expressed_genes_receiver,
genes_of_interest,
background_genes = NULL,
n_top_ligands = 42,
n_top_targets = 250

132 nichenet_ligand_activities

Arguments

ligand_target_matrix
A matrix with rows and columns corresponding to ligands and targets, respec-
tively. Produced by nichenet_ligand_target_matrix ornichenetr::construct_ligand_target_m:

lr_network A data frame with ligand-receptor interactions, as produced by nichenet_lr_network.

expressed_genes_transmitter
Character vector with the gene symbols of the genes expressed in the cells trans-
mitting the signal.

expressed_genes_receiver
Character vector with the gene symbols of the genes expressed in the cells re-
ceiving the signal.

genes_of_interest
Character vector with the gene symbols of the genes of interest. These are the
genes in the receiver cell population that are potentially affected by ligands ex-
pressed by interacting cells (e.g. genes differentially expressed upon cell-cell
interaction).

background_genes
Character vector with the gene symbols of the genes to be used as background.

n_top_ligands How many of the top ligands to include in the ligand-target table.

n_top_targets For each ligand, how many of the top targets to include in the ligand-target table.

Value

A named list with ‘ligand_activities* (a tibble giving several ligand activity scores; following columns
in the tibble: $test_ligand, $auroc, $aupr and $pearson) and ‘ligand_target_links* (a tibble with
columns ligand, target and weight (i.e. regulatory potential score)).

Examples

Not run:
networks <- nichenet_networks()
expression <- nichenet_expression_data()
optimization_results <- nichenet_optimization(networks, expression)
nichenet_model <- nichenet_build_model(optimization_results, networks)
lt_matrix <- nichenet_ligand_target_matrix(
nichenet_model$weighted_networks,
networks$lr_network,
nichenet_model$optimized_parameters
)
ligand_activities <- nichenet_ligand_activities(
ligand_target_matrix = lt_matrix,
lr_network = networks$lr_network,
the rest of the parameters should come
from your transcriptomics data:
expressed_genes_transmitter = expressed_genes_transmitter,
expressed_genes_receiver = expressed_genes_receiver,
genes_of_interest = genes_of_interest

nichenet_ligand_target_links 133

End(Not run)

nichenet_ligand_target_links
Compiles a table with weighted ligand-target links

Description

A wrapper around nichenetr::get_weighted_ligand_target_links to compile a data frame
with weighted links from the top ligands to their top targets.

Usage

nichenet_ligand_target_links(
ligand_activities,
ligand_target_matrix,
genes_of_interest,
n_top_ligands = 42,
n_top_targets = 250

Arguments

ligand_activities
Ligand activity table as produced by nichenetr: :predict_ligand_activities.

ligand_target_matrix
Ligand-target matrix as produced by nichenetr: :construct_ligand_target_matrix
or the wrapper around it in the current package: nichenet_ligand_target_matrix.

genes_of_interest
Character vector with the gene symbols of the genes of interest. These are the
genes in the receiver cell population that are potentially affected by ligands ex-
pressed by interacting cells (e.g. genes differentially expressed upon cell-cell
interaction).

n_top_ligands How many of the top ligands to include in the ligand-target table.

n_top_targets For each ligand, how many of the top targets to include in the ligand-target table.

Value

A tibble with columns ligand, target and weight (i.e. regulatory potential score).

134 nichenet_ligand_target_matrix

Examples

Not run:
networks <- nichenet_networks()
expression <- nichenet_expression_data()
optimization_results <- nichenet_optimization(networks, expression)
nichenet_model <- nichenet_build_model(optimization_results, networks)
1t_matrix <- nichenet_ligand_target_matrix(
nichenet_model$weighted_networks,
networks$lr_network,
nichenet_model$optimized_parameters
)
ligand_activities <- nichenet_ligand_activities(
ligand_target_matrix = lt_matrix,
lr_network = networks$lr_network,
the rest of the parameters should come
from your transcriptomics data:
expressed_genes_transmitter = expressed_genes_transmitter,
expressed_genes_receiver = expressed_genes_receiver,
genes_of_interest = genes_of_interest
)
1t_links <- nichenet_ligand_target_links(
ligand_activities = ligand_activities,
ligand_target_matrix = lt_matrix,
genes_of_interest = genes_of_interest,
n_top_ligands = 20,
n_top_targets = 100

End(Not run)

nichenet_ligand_target_matrix
Creates a NicheNet ligand-target matrix

Description

Creates a NicheNet ligand-target matrix

Usage

nichenet_ligand_target_matrix(
weighted_networks,
1r_network,
optimized_parameters,
use_weights = TRUE,
construct_ligand_target_matrix_param = list()

nichenet_Ir network 135

Arguments

weighted_networks
Weighted networks as provided by nichenet_build_model.

lr_network A data frame with ligand-receptor interactions, as produced by nichenet_lr_network.
optimized_parameters

The outcome of NicheNet parameter optimization as produced by nichenet_build_model.
use_weights Logical: wether the network sources are weighted. In this function it only affects

the output file name.
construct_ligand_target_matrix_param

Override parameters for nichenetr: :construct_ligand_target_matrix.

Value

A matrix containing ligand-target probability scores.

Examples

Not run:
networks <- nichenet_networks()
expression <- nichenet_expression_data()
optimization_results <- nichenet_optimization(networks, expression)
nichenet_model <- nichenet_build_model(optimization_results, networks)
1t_matrix <- nichenet_ligand_target_matrix(
nichenet_model$weighted_networks,
networks$lr_network,
nichenet_model$optimized_parameters

)

End(Not run)

nichenet_lr_network Builds a NicheNet ligand-receptor network

Description

Builds ligand-receptor network prior knowledge for NicheNet using multiple resources.

Usage

nichenet_lr_network(
omnipath = list(),
guide2pharma = list(),
ramilowski = list(),
only_omnipath = FALSE,
quality_filter_param = list()

136 nichenet_Ir_network_guide2pharma

Arguments

omnipath List with paramaters to be passed to nichenet_lr_network_omnipath.
guide2pharma List with paramaters to be passed to nichenet_lr_network_guide2pharma.
ramilowski List with paramaters to be passed to nichenet_lr_network_ramilowski.

only_omnipath Logical: a shortcut to use only OmniPath as network resource.
quality_filter_param
Arguments for filter_intercell_network (quality filtering of the OmniPath
ligand-receptor network). It is recommended to check these parameters and
apply some quality filtering. The defaults already ensure certain filtering, but
you might want more relaxed or stringent options.

Value

A network data frame (tibble) with ligand-receptor interactions suitable for use with NicheNet.

See Also

* nichenet_lr_network_omnipath

nichenet_lr_network_guide2pharma

e nichenet_lr_network_ramilowski

filter_intercell_network

Examples

load everything with the default parameters:
1r_network <- nichenet_lr_network()

don't use Ramilowski:
1r_network <- nichenet_lr_network(ramilowski = NULL)

use only OmniPath:
1lr_network_omnipath <- nichenet_lr_network(only_omnipath = TRUE)

nichenet_lr_network_guide2pharma
Ligand-receptor network from Guide to Pharmacology

Description

Downloads ligand-receptor interactions from the Guide to Pharmacology database and converts it
to a format suitable for NicheNet.

Usage

nichenet_lr_network_guide2pharma()

nichenet_Ir_network_omnipath

Value

Data frame with ligand-receptor interactions in NicheNet format.

See Also

nichenet_lr_network, guide2pharma_download

Examples

g2p_lr_network <- nichenet_lr_network_guide2pharma()

137

nichenet_lr_network_omnipath

Builds ligand-receptor network for NicheNet using OmniPath

Description

Retrieves network prior knowledge from OmniPath and provides it in a format suitable for Nich-

eNet. This method never downloads the ‘ligrecextra‘ dataset because the ligand-receptor interac-
tions are supposed to come from nichenet_lr_network_omnipath.

Usage

nichenet_lr_network_omnipath(quality_filter_param = list(), ...)

Arguments

quality_filter_param

List with arguments for filter_intercell_network. It is recommended to

check these parameters and apply some quality filtering. The defaults already
ensure certain filtering, but you might want more relaxed or stringent options.
Passed to import_intercell_network

Value
A network data frame (tibble) with ligand-receptor interactions suitable for use with NicheNet.
See Also

e nichenet_lr_network

e import_intercell_network

138 nichenet_Ir_network_ramilowski

Examples

use only ligand-receptor interactions (not for example ECM-adhesion):
op_lr_network <- nichenet_lr_network_omnipath(ligand_receptor = TRUE)

use only CellPhoneDB and Guide to Pharmacology:
op_lr_network <- nichenet_lr_network_omnipath(
resources = c('CellPhoneDB', 'Guide2Pharma')

)

only interactions where the receiver is a transporter:
op_lr_network <- nichenet_lr_network_omnipath(
receiver_param = list(parent = 'transporter')

)

nichenet_lr_network_ramilowski
Ligand-receptor network from Ramilowski 2015

Description

Downloads ligand-receptor interactions from Supplementary Table 2 of the paper ’A draft network
of ligand-receptor-mediated multicellular signalling in human’ (Ramilowski et al. 2015, https:
//www.nature.com/articles/ncomms8866). It converts the downloaded table to a format suitable
for NicheNet.

Usage
nichenet_lr_network_ramilowski (
evidences = c("literature supported”, "putative")
)
Arguments
evidences Character: evidence types, "literature supported”, "putative”" or both.
Value

Data frame with ligand-receptor interactions in NicheNet format.

See Also

* nichenet_lr_network

e ramilowski_download

https://www.nature.com/articles/ncomms8866
https://www.nature.com/articles/ncomms8866

nichenet_main 139

Examples

use only the literature supported data:
rami_lr_network <- nichenet_lr_network_ramilowski (

evidences = 'literature supported’
)
nichenet_main Executes the full NicheNet pipeline
Description

Builds all prior knowledge data required by NicheNet. For this it calls a multitude of methods to
download and combine data from various databases according to the settings. The content of the
prior knowledge data is highly customizable, see the documentation of the related functions. After
the prior knowledge is ready, it performs parameter optimization to build a NicheNet model. This
results a weighted ligand- target matrix. Then, considering the expressed genes from user provided
data, a gene set of interest and background genes, it executes the NicheNet ligand activity analysis.

Usage

nichenet_main(
only_omnipath = FALSE,
expressed_genes_transmitter = NULL,
expressed_genes_receiver = NULL,
genes_of_interest = NULL,
background_genes = NULL,
use_weights = TRUE,
n_top_ligands = 42,
n_top_targets = 250,
signaling_network = list(),
lr_network = list(),
gr_network = list(),
small = FALSE,
tiny = FALSE,
make_multi_objective_function_param = list(),
objective_function_param = list(),
mlrmbo_optimization_param = list(),
construct_ligand_target_matrix_param = list(),
results_dir = NULL,
quality_filter_param = list()

Arguments

only_omnipath Logical: use only OmniPath for network knowledge. This is a simple switch for
convenience, further options are available by the other arguments. By default we

140 nichenet_main

use all available resources. The networks can be customized on a resource by
resource basis, as well as providing custom parameters for individual resources,
using the parameters ‘signaling_network®, ‘Ir_network* and ‘gr_network".
expressed_genes_transmitter
Character vector with the gene symbols of the genes expressed in the cells trans-
mitting the signal.
expressed_genes_receiver
Character vector with the gene symbols of the genes expressed in the cells re-
ceiving the signal.
genes_of_interest
Character vector with the gene symbols of the genes of interest. These are the
genes in the receiver cell population that are potentially affected by ligands ex-
pressed by interacting cells (e.g. genes differentially expressed upon cell-cell
interaction).
background_genes
Character vector with the gene symbols of the genes to be used as background.
use_weights Logical: calculate and use optimized weights for resources (i.e. one resource
seems to be better than another, hence the former is considered with a higher
weight).
n_top_ligands How many of the top ligands to include in the ligand-target table.
n_top_targets How many of the top targets (for each of the top ligands) to consider in the
ligand-target table.
signaling_network
A list of parameters for building the signaling network, passed to nichenet_signaling_network.

1r_network A list of parameters for building the ligand-receptor network, passed to nichenet_lr_network.
gr_network A list of parameters for building the gene regulatory network, passed to nichenet_gr_network.
small Logical: build a small network for testing purposes, using only OmniPath data.

It is also a high quality network, it is reasonable to try the analysis with this
small network.
tiny Logical: build an even smaller network for testing purposes. As this involves
random subsetting, it’s not recommended to use this network for analysis.
make_multi_objective_function_param
Override parameters for smoof : :makeMultiObjectiveFunction.
objective_function_param
Override additional arguments passed to the objective function.
mlrmbo_optimization_param
Override arguments for nichenetr: :mlrmbo_optimization.
construct_ligand_target_matrix_param
Override parameters for nichenetr: :construct_ligand_target_matrix.
results_dir Character: path to the directory to save intermediate and final outputs from Nich-
eNet methods.
quality_filter_param
Arguments for filter_intercell_network (quality filtering of the OmniPath
ligand-receptor network). It is recommended to check these parameters and
apply some quality filtering. The defaults already ensure certain filtering, but
you might want more relaxed or stringent options.

nichenet_main

Details

About small and tiny networks: Building a NicheNet model is computationally demanding, taking
several hours to run. As this is related to the enormous size of the networks, to speed up testing we
can use smaller networks, around 1,000 times smaller, with few thousands of interactions instead
of few millions. Random subsetting of the whole network would result disjunct fragments, instead
we load only a few resources. To run the whole pipeline with tiny networks use nichenet_test.

Value

A named list with the intermediate and final outputs of the pipeline: ‘networks‘, ‘expression‘,

‘optimized_parameters‘, ‘weighted_networks® and ‘ligand_target_matrix".

See Also

nichenet_networks
nichenet_signaling_network
nichenet_lr_network
nichenet_gr_network
nichenet_test
nichenet_workarounds

nichenet_results_dir

Examples

N
nich

)

E

ot run:
enet_results <- nichenet_main(
altering some network resource parameters, the rest
of the resources will be loaded according to the defaults
signaling_network = list(
cpdb = NULL, # this resource will be excluded
inbiomap = NULL,
evex = list(min_confidence = 1.0) # override some parameters
),
gr_network = list(only_omnipath = TRUE),
n_top_ligands = 20,
override the default number of CPU cores to use
mlrmbo_optimization_param = list(ncores = 4)

nd(Not run)

142 nichenet_networks

nichenet_networks Builds NicheNet network prior knowledge

Description

Builds network knowledge required by NicheNet. For this it calls a multitude of methods to down-
load and combine data from various databases according to the settings. The content of the prior
knowledge data is highly customizable, see the documentation of the related functions.

Usage

nichenet_networks(
signaling_network = list(),
lr_network = list(),
gr_network = list(),
only_omnipath = FALSE,
small = FALSE,

tiny = FALSE,
quality_filter_param = list()
)
Arguments

signaling_network
A list of parameters for building the signaling network, passed to nichenet_signaling_network

lr_network A list of parameters for building the ligand-receptor network, passed to nichenet_lr_network
gr_network A list of parameters for building the gene regulatory network, passed to nichenet_gr_network
only_omnipath Logical: a shortcut to use only OmniPath as network resource.

small Logical: build a small network for testing purposes, using only OmniPath data.
It is also a high quality network, it is reasonable to try the analysis with this
small network.

tiny Logical: build an even smaller network for testing purposes. As this involves
random subsetting, it’s not recommended to use this network for analysis.
quality_filter_param
Arguments for filter_intercell_network (quality filtering of the OmniPath
ligand-receptor network). It is recommended to check these parameters and
apply some quality filtering. The defaults already ensure certain filtering, but
you might want more relaxed or stringent options.

Value

A named list with three network data frames (tibbles): the signaling, the ligand-receptor (Ir) and the
gene regulatory (gr) networks.

nichenet_optimization 143

See Also

e nichenet_signaling_network
* nichenet_lr_network

* nichenet_gr_network

Examples

Not run:

networks <- nichenet_networks()

dplyr: :sample_n(networks$gr_network, 10)
A tibble: 10 x 4

from to source database

<chr> <chr> <chr> <chr>

1 MAX ALG3 harmonizome_ENCODE harmonizome
2 MAX IMPDH1 harmonizome_ENCODE harmonizome
3 SMAD5 LCP1 Remap_5 Remap

4 HNF4A TNFRSF19 harmonizome_CHEA harmonizome
5 SMC3 FAP harmonizome_ENCODE harmonizome
6 E2F6 HIST1H1B harmonizome_ENCODE harmonizome
7 TFAP2C MAT2B harmonizome_ENCODE harmonizome
8 USF1 TBX4 harmonizome_TRANSFAC harmonizome
9 MIR133B FETUB harmonizome_TRANSFAC harmonizome
10 SP4 HNRNPH2 harmonizome_ENCODE harmonizome

End(Not run)

use only OmniPath:
omnipath_networks <- nichenet_networks(only_omnipath = TRUE)

nichenet_optimization Optimizes NicheNet model parameters

Description

Optimize NicheNet method parameters, i.e. PageRank parameters and source weights, basedon a
collection of experiments where the effect of a ligand on gene expression was measured.

Usage

nichenet_optimization(
networks,
expression,
make_multi_objective_function_param = list(),
objective_function_param = list(),
mlrmbo_optimization_param = list()

144 nichenet_remove_orphan_ligands

Arguments
networks A list with NicheNet format signaling, ligand-receptor and gene regulatory net-
works as produced by nichenet_networks.
expression A list with expression data from ligand perturbation experiments, as produced

by nichenet_expression_data.

make_multi_objective_function_param
Override parameters for smoof : :makeMultiObjectiveFunction.

objective_function_param
Override additional arguments passed to the objective function.

mlrmbo_optimization_param
Override arguments for nichenetr: :mlrmbo_optimization.

Value

A result object from the function m1rMBO: :mbo. Among other things, this contains the optimal
parameter settings, the output corresponding to every input etc.

Examples

Not run:

networks <- nichenet_networks()

expression <- nichenet_expression_data()

optimization_results <- nichenet_optimization(networks, expression)

End(Not run)

nichenet_remove_orphan_ligands
Removes experiments with orphan ligands

Description

Removes from the expression data the perturbation experiments involving ligands without connec-
tions.

Usage

nichenet_remove_orphan_ligands(expression, lr_network)

Arguments

expression Expression data as returned by nichenet_expression_data.

1r_network A NicheNet format ligand-recptor network data frame as produced by nichenet_lr_network.

nichenet_results_dir 145

Value

The same list as ‘expression‘ with certain elements removed.

Examples

1r_network <- nichenet_lr_network()
expression <- nichenet_expression_data()
expression <- nichenet_remove_orphan_ligands(expression, lr_network)

nichenet_results_dir Path to the current NicheNet results directory

Description

Path to the directory to save intermediate and final outputs from NicheNet methods.

Usage

nichenet_results_dir()

Value

Character: path to the NicheNet results directory.

Examples

nichenet_results_dir()
[1] "nichenet_results”

nichenet_signaling_network
Builds a NicheNet signaling network

Description

Builds signaling network prior knowledge for NicheNet using multiple resources.

146

Usage

nichenet_signaling_network(

omnipath = list(),
pathwaycommons = list(),
harmonizome = list(),
vinayagam = list(),

cpdb = 1list(),

evex = list(),

inbiomap = list(),
only_omnipath = FALSE

Arguments

omnipath
pathwaycommons
harmonizome
vinayagam

cpdb

evex

inbiomap

only_omnipath

Value

nichenet_signaling_network

List with paramaters to be passed to nichenet_signaling_network_omnipath.
List with paramaters to be passed to nichenet_signaling_network_pathwaycommons
List with paramaters to be passed to nichenet_signaling_network_harmonizome
List with paramaters to be passed to nichenet_signaling_network_vinayagam.

List with paramaters to be passed to nichenet_signaling_network_cpdb.
List with paramaters to be passed to nichenet_signaling_network_evex.
List with paramaters to be passed to nichenet_signaling_network_inbiomap.

Logical: a shortcut to use only OmniPath as network resource.

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

See Also

* nichenet_signaling_network_omnipath

* nichenet_signaling_network_pathwaycommons
* nichenet_signaling_network_harmonizome

* nichenet_signaling_network_vinayagam

e nichenet_signaling_network_cpdb

* nichenet_signaling_network_evex

* nichenet_signaling_network_inbiomap

Examples

load everything with the default parameters:
we don't load inBio Map due to the - hopefully
temporary - issues of their server

sig_network <- nichenet_signaling_network(inbiomap = NULL, cpdb = NULL)

override parameters for some resources:

nichenet_signaling_network_cpdb 147

sig_network <- nichenet_signaling_network(
omnipath = list(resources = c('SIGNOR', 'SignalLink3', 'SPIKE')),
pathwaycommons = NULL,

harmonizome = list(datasets = c('phosphositeplus', 'depod')),

we can not include this in everyday tests as it takes too long:
cpdb = list(complex_max_size = 1, min_score = .98),

cpdb = NULL,

evex = list(min_confidence = 1.5),
inbiomap = NULL
)

use only OmniPath:
sig_network_omnipath <- nichenet_signaling_network(only_omnipath = TRUE)

nichenet_signaling_network_cpdb
Builds signaling network for NicheNet using ConsensusPathDB

Description

Builds signaling network prior knowledge using ConsensusPathDB (CPDB) data. Note, the inter-
actions from CPDB are not directed and many of them comes from complex expansion. Find out
more at http://cpdb.molgen.mpg.de/.

Usage

nichenet_signaling_network_cpdb(...)

Arguments

Passed to consensuspathdb_download.

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

See Also

* nichenet_signaling_network
¢ consensuspathdb_download

Examples

use some parameters stricter than default:
cpdb_signaling_network <- nichenet_signaling_network_cpdb(
complex_max_size = 2,
min_score = .99

http://cpdb.molgen.mpg.de/

148 nichenet_signaling_network_harmonizome

nichenet_signaling_network_evex
NicheNet signaling network from EVEX

Description

Builds signaling network prior knowledge for NicheNet from the EVEX database.

Usage

nichenet_signaling_network_evex(top_confidence = 0.75, indirect = FALSE, ...)

Arguments

top_confidence Double, between 0 and 1. Threshold based on the quantile of the confidence
score.

indirect Logical: whether to include indirect interactions.

Ignored.

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

See Also

e evex_download

* nichenet_signaling_network

Examples

ev_signaling_network <- nichenet_signaling_network_evex(
top_confidence = .9

)

nichenet_signaling_network_harmonizome
NicheNet signaling network from Harmonizome

Description

Builds signaling network prior knowledge for NicheNet using Harmonizome

nichenet_signaling_network_inbiomap 149

Usage

nichenet_signaling_network_harmonizome (
datasets = c("phosphositeplus”, "kea", "depod"),

)
Arguments
datasets The datasets to use. For possible values please refer to default value and the
Harmonizome webpage.
Ignored.
Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

Examples

use only KEA and PhosphoSite:

hz_signaling_network <- nichenet_signaling_network_harmonizome(
datasets = c('kea', 'phosphositeplus')

)

nichenet_signaling_network_inbiomap
NicheNet signaling network from InWeb InBioMap

Description

Builds signaling network prior knowledge for NicheNet from the InWeb InBioMap database.

Usage

nichenet_signaling_network_inbiomap(...)

Arguments

Ignored.

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

See Also

nichenet_signaling_network, inbiomap_download

150 nichenet_signaling_network_omnipath

Examples

Not run:
ib_signaling_network <- nichenet_signaling_network_inbiomap()

End(Not run)

nichenet_signaling_network_omnipath
Builds signaling network for NicheNet using OmniPath

Description

Retrieves network prior knowledge from OmniPath and provides it in a format suitable for Nich-
eNet. This method never downloads the ‘ligrecextra® dataset because the ligand-receptor interac-
tions are supposed to come from nichenet_lr_network_omnipath.

Usage

nichenet_signaling_network_omnipath(min_curation_effort = 0, ...)

Arguments

min_curation_effort
Lower threshold for curation effort

Passed to import_post_translational_interactions

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

See Also

* nichenet_signaling_network

Examples

use interactions with at least 2 evidences (reference or database)
op_signaling_network <- nichenet_signaling_network_omnipath(
min_curation_effort = 2

)

nichenet_signaling_network_pathwaycommons 151

nichenet_signaling_network_pathwaycommons
NicheNet signaling network from PathwayCommons

Description

Builds signaling network prior knowledge for NicheNet using PathwayCommons.

Usage
nichenet_signaling_network_pathwaycommons(
interaction_types = c("catalysis-precedes”, "controls-phosphorylation-of",
"controls-state-change-of"”, "controls-transport-of”, "in-complex-with",

"interacts-with"),

Arguments

interaction_types
Character vector with PathwayCommons interaction types. Please refer to the
default value and the PathwayCommons webpage.

Ignored.

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

Examples

use only the "controls-transport-of” interactions:
pc_signaling_network <- nichenet_signaling_network_pathwaycommons(
interaction_types = 'controls-transport-of'

)

nichenet_signaling_network_vinayagam
NicheNet signaling network from Vinayagam

Description

Builds signaling network prior knowledge for NicheNet using Vinayagam 2011 Supplementary
Table S6. Find out more at https://doi.org/10.1126/scisignal.2001699.

https://doi.org/10.1126/scisignal.2001699

152 nichenet_test

Usage

nichenet_signaling_network_vinayagam(...)

Arguments

Ignored.

Value

A network data frame (tibble) with signaling interactions suitable for use with NicheNet.

Examples

vi_signaling_network <- nichenet_signaling_network_vinayagam()

nichenet_test Run the NicheNet pipeline with a little dummy network

Description

Loads a tiny network and runs the NicheNet pipeline with low number of iterations in the optimiza-
tion process. This way the pipeline runs in a reasonable time in order to test the code. Due to the
random subsampling disconnected networks might be produced sometimes. If you see an error like
"Error in if (sd(prediction_vector) == 0) ... missing value where TRUE/FALSE needed", the ran-
dom subsampled input is not appropriate. In this case just interrupt and call again. This test ensures
the computational integrity of the pipeline. If it fails during the optimization process, try to start
it over several times, even restarting R. The unpredictability is related to m1rMBO and nichenetr
not being prepared to handle certain conditions, and it’s also difficult to find out which conditions
lead to which errors. At least 3 different errors appear time to time, depending on the input. It
also seems like restarting R sometimes helps, suggesting that the entire system might be somehow
stateful. You can ignore the Parallelization was not stopped warnings on repeated runs.

Usage

nichenet_test(...)

Arguments

Passed to nichenet_main.

Value

A named list with the intermediate and final outputs of the pipeline: ‘networks‘, ‘expression‘,
‘optimized_parameters‘, ‘weighted_networks® and ‘ligand_target_matrix".

nichenet_workarounds 153

Examples

Not run:
nnt <- nichenet_test()

End(Not run)

nichenet_workarounds Workarounds using NicheNet without attaching the package

Description

NicheNet requires the availability of some lazy loaded external data which are not available if the
package is not loaded and attached. Also, the BBmisc: :convertToShortString used for error
reporting in m1rMBO: :evalTargetFun.OptState is patched here to print longer error messages.
Maybe it’s a better solution to attach nichenetr before running the NicheNet pipeline. Alterna-
tively you can try to call this function in the beginning. Why we don’t call this automatically is just
because we don’t want to load datasets from another package without the user knowing about it.

Usage

nichenet_workarounds()

Value

Returns NULL.

Examples

Not run:
nichenet_workarounds()

End(Not run)

obo_parser Generic OBO parser

Description

Reads the contents of an OBO file and processes it into data frames or a list based data structure.

154 obo_parser

Usage

obo_parser(
path,
relations = c("is_a", "part_of", "occurs_in", "regulates”, "positively_regulates”,
"negatively_regulates”),
shorten_namespace = TRUE,
tables = TRUE

)
Arguments
path Path to the OBO file.
relations Character vector: process only these relations.

shorten_namespace
Logical: shorten the namespace to a single letter code (as usual for Gene Ontol-
ogy, e.g. cellular_component = "C").

tables Logical: return data frames (tibbles) instead of nested lists.

Value

A list with the following elements: 1) "names" a list with terms as names and names as values; 2)
"namespaces"” a list with terms as names and namespaces as values; 3) "relations" a list with rela-
tions between terms: terms are keys, values are lists with relations as names and character vectors of
related terms as values; 4) "subsets" a list with terms as keys and character vectors of subset names
as values (or NULL if the term does not belong to any subset); 5) "obsolete" character vector with all

the terms labeled as obsolete. If the tables parameter is TRUE, "names", "namespaces", "relations"
and "subsets" will be data frames (tibbles).

See Also

e relations_list_to_table
e relations_table_to_list

e swap_relations

Examples

goslim_url <-
"http://current.geneontology.org/ontology/subsets/goslim_generic.obo"

path <- tempfile()

curl::curl_fetch_disk(goslim_url, path)

obo <- obo_parser(path, tables = FALSE)

unlink(path)

names (obo)

[1] "names” "namespaces

head(obo$relations, n = 2)

$7G0:0000001"

$°G0:0000001 $is_a

[1] "GO:0048308" "GO:0048311"

"o

relations” "subsets” "obsolete”

oma_code 155

$°G0: 0000002
$°G0:0000002" $is_a

#
#
#
[1]1 "GO:0007005"

oma_code Orthologous Matrix (OMA) codes of organisms

Description

Note: OMA species codes are whenever possible identical to UniProt codes.

Usage

oma_code (name)

Arguments

name Vector with any kind of organism name or identifier, can be also mixed type.

Value

A character vector with the Orthologous Matrix (OMA) codes of the organisms.

See Also
* nchi_taxid
e latin_name
* ensembl_name

¢ common_name

Examples

oma_code(c (10090, "cjacchus”, "Vicugna pacos”))
[1] "MOUSE"” "CALJA" "VICPA"

156 oma_pairwise

oma_organisms Organism identifiers from the Orthologous Matrix

Description

Organism identifiers from the Orthologous Matrix

Usage

oma_organisms()

Value

A data frame with organism identifiers.

See Also

ensembl_organisms

Examples

oma_organisms()

oma_pairwise Orthologous gene pairs between two organisms

Description

From the web API of Orthologous Matrix (OMA). Items which could not be translated to ‘id_type*
(but present in the data with their internal OMA IDs) are removed.

Usage

oma_pairwise(
organism_a = "human",
organism_b = "mouse",
id_type = "uniprot”,
mappings = c("1:1", "1:m", "n:1", "n:m"),
only_ids = TRUE

oma_pairwise_genesymbols 157

Arguments

organism_a
organism_b

id_type

mappings

only_ids

Value

Name or identifier of an organism.
Name or identifier of another organism.

The gene or protein identifier to use in the table. For a list of supported ID types
see ‘omnipathr.envid_typesoma‘. In addition, "genesymbol" is supported, in
this case oma_pairwise_genesymbols will be called automatically.

Character vector: control ambiguous mappings:
e 1:1 - unambiguous
* 1:m - one-to-many
* n:1 - many-to-one
* n:m - many-to-many

Logical: include only the two identifier columns, not the mapping type and the
orthology group columns.

A data frame with orthologous gene pairs.

Examples
oma_pairwise("human”, "mouse"”, "uniprot”)
A tibble: 21,753 x 4
id_organism_a id_organism_b mapping oma_group
<chr> <chr> <chr> <dbl>
1 Q15326 Q8R5C8 1:1 1129380
2 Q9Y2E4 B2RQ71 1:1 681224
3 Q92615 Q6A0A2 1:1 1135087
4 Q9BZE4 Q99ME9 1:1 1176239
5 Q9BXS1 Q8BFZ6 T:m NA
... with 21,743 more rows

oma_pairwise_genesymbols

Orthologous pairs of gene symbols between two organisms

Description

The Orthologous Matrix (OMA), a resource of orthologous relationships between genes, doesn’t
provide gene symbols, the identifier preferred in many bioinformatics pipelines. Hence this function
wraps oma_pairwise by translating the identifiers used in OMA to gene symbols. Items that can
not be translated to ‘id_type‘ (but present in the data with their internal OMA IDs) will be removed.
Then, in this function we translate the identifiers to gene symbols.

158 oma_pairwise_translated

Usage
oma_pairwise_genesymbols(
organism_a = "human",
organism_b = "mouse",
oma_id_type = "uniprot_entry",
mappings = c("1:1", "1:m", "n:1", "n:m"),
only_ids = TRUE
)
Arguments
organism_a Name or identifier of an organism.
organism_b Name or identifier of another organism.

oma_id_type Character: the gene or protein identifier to be queried from OMA. These IDs
will be translated to ‘id_type‘.

mappings Character vector: control ambiguous mappings:

* 1:1 - unambiguous
* 1:m - one-to-many
* n:1 - many-to-one
* n:m - many-to-many

only_ids Logical: include only the two identifier columns, not the mapping type and the
orthology group columns.

Value

A data frame with orthologous gene pairs.

Examples

oma_pairwise_genesymbols("human”, "mouse")

oma_pairwise_translated
Orthologous pairs between two organisms for ID types not supported
by OMA

Description

The Orthologous Matrix (OMA), a resource of orthologous relationships between genes, doesn’t
provide gene symbols, the identifier preferred in many bioinformatics pipelines. Hence this function
wraps oma_pairwise by translating the identifiers used in OMA to gene symbols. Items that can
not be translated to ‘id_type‘ (but present in the data with their internal OMA IDs) will be removed.
Then, in this function we translate the identifiers to the desired ID type.

omnipath-interactions 159

Usage
oma_pairwise_translated(
organism_a = "human",
organism_b = "mouse",
id_type = "uniprot”,
oma_id_type = "uniprot_entry”,
mappings = c("1:1", "1:m", "n:1", "n:m"),
only_ids = TRUE
)
Arguments
organism_a Name or identifier of an organism.
organism_b Name or identifier of another organism.
id_type The gene or protein identifier to use in the table. For a list of supported ID

types see ‘omnipathr.envid_typesoma‘. These are the identifiers that will be
translated to gene symbols.

oma_id_type Character: the gene or protein identifier to be queried from OMA. These IDs
will be translated to ‘id_type‘.

mappings Character vector: control ambiguous mappings:

e 1:1 - unambiguous
* 1:m - one-to-many
* n:1 - many-to-one

* n:m - many-to-many

only_ids Logical: include only the two identifier columns, not the mapping type and the
orthology group columns.

Value

A data frame with orthologous gene pairs.

Examples

oma_pairwise_translated("human”, "mouse"”)

omnipath-interactions Molecular interactions from OmniPath

160 omnipath-interactions

Description

The functions listed here all download pairwise, causal molecular interactions from the https:
//omnipathdb.org/interactions endpoint of the OmniPath web service. They are different only
in the type of interactions and the kind of resources and data they have been compiled from. A
complete list of these functions is available below, these cover the interaction datasets and types
currently available in OmniPath:

Interactions from the https://omnipathdb.org/interactions endpoint of the OmniPath web
service. By default, it downloads only the "omnipath" dataset, which corresponds to the curated
causal interactions described in Turei et al. 2016.

Imports interactions from the ‘omnipath‘ dataset of OmniPath, a dataset that inherits most of its de-
sign and contents from the original OmniPath core from the 2016 publication. This dataset consists
of about 40k interactions.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=pathwayextra,
which contains activity flow interactions without literature reference. The activity flow interactions
supported by literature references are part of the ‘omnipath* dataset.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=kinaseextra,
which contains enzyme-substrate interactions without literature reference. The enzyme-substrate
interactions supported by literature references are part of the ‘omnipath‘ dataset.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=ligrecextra,
which contains ligand-receptor interactions without literature reference. The ligand-receptor in-
teractions supported by literature references are part of the ‘omnipath* dataset.

Imports interactions from all post-translational datasets of OmniPath. The datasets are "omnipath",

"kinaseextra", "pathwayextra" and "ligrecextra".

Imports the dataset from: https://omnipathdb.org/interactions?datasets=dorothea which
contains transcription factor (TF)-target interactions from DoRothEA https://github.com/saezlab/
DoRothEA DoRothEA is a comprehensive resource of transcriptional regulation, consisting of 16
original resources, in silico TFBS prediction, gene expression signatures and ChIP-Seq binding site
analysis.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=tf_target, which
contains transcription factor-target protein coding gene interactions. Note: this is not the only TF-
target dataset in OmniPath, ‘dorothea‘ is the other one and the ‘tf_mirna‘ dataset provides TF-
miRNA gene interactions.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=tf_target, dorothea,
which contains transcription factor-target protein coding gene interactions.

CollecTRI is a comprehensive resource of transcriptional regulation, published in 2023, consisting
of 14 resources and original literature curation.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=mirnatarget,
which contains miRNA-mRNA interactions.

Imports the dataset from: https://omnipathdb.org/interactions?datasets=tf_mirna, which
contains transcription factor-miRNA gene interactions

Imports the dataset from: https://omnipathdb.org/interactions?datasets=lncrna_mrna,
which contains IncRNA-mRNA interactions

https://omnipathdb.org/interactions
https://omnipathdb.org/interactions
https://omnipathdb.org/interactions
https://omnipathdb.org/interactions?datasets=pathwayextra
https://omnipathdb.org/interactions?datasets=kinaseextra
https://omnipathdb.org/interactions?datasets=ligrecextra
https://omnipathdb.org/interactions?datasets=dorothea
https://github.com/saezlab/DoRothEA
https://github.com/saezlab/DoRothEA
https://omnipathdb.org/interactions?datasets=tf_target
https://omnipathdb.org/interactions?datasets=tf_target,dorothea
https://omnipathdb.org/interactions?datasets=mirnatarget
https://omnipathdb.org/interactions?datasets=tf_mirna
https://omnipathdb.org/interactions?datasets=lncrna_mrna

omnipath-interactions 161

Imports the dataset from: https://omnipathdb.org/interactions?datasets=small_molecule
which contains small molecule-protein interactions. Small molecules can be metabolites, intrinsic
ligands or drug compounds.

Usage
omnipath_interactions(...)
omnipath(...)
pathwayextra(...)
kinaseextra(...)
ligrecextra(...)
post_translational(...)
dorothea(dorothea_levels = c("A", "B"), ...)
tf_target(...)
transcriptional (dorothea_levels = c("A", "B"), ...)
collectri(...)
mirna_target(...)
tf_mirna(...)
Incrna_mrna(...)
small_molecule(...)
all_interactions(
dorothea_levels = c("A", "B"),
types = NULL,

fields = NULL,
exclude = NULL,

Arguments

Arguments passed on to omnipath_query, omnipath_query, omnipath_query,
omnipath_query, omnipath_query, omnipath_query, omnipath_query, omnipath_query,
omnipath_query, omnipath_query, omnipath_query, omnipath_query, omnipath_query,
omnipath_query, omnipath_query

https://omnipathdb.org/interactions?datasets=small_molecule

162 omnipath-interactions

organism Character or integer: name or NCBI Taxonomy ID of the organism.
OmniPath is built of human data, and the web service provides orthology
translated interactions and enzyme-substrate relationships for mouse and
rat. For other organisms and query types, orthology translation will be
called automatically on the downloaded human data before returning the
result.

resources Character vector: name of one or more resources. Restrict the
data to these resources. For a complete list of available resources, call the
‘<query_type>_resources‘ functions for the query type of interst.

datasets Character vector: name of one or more datasets. In the interactions
query type a number of datasets are available. The default is caled "omni-
path", and corresponds to the curated causal signaling network published in
the 2016 OmniPath paper.

genesymbols Character or logical: TRUE or FALS or "yes" or "no". Include
the ‘genesymbols‘ column in the results. OmniPath uses UniProt IDs as the
primary identifiers, gene symbols are optional.

default_fields Logical: if TRUE, the default fields will be included.

silent Logical: if TRUE, no messages will be printed. By default a summary
message is printed upon successful download.

logicals Character vector: fields to be cast to logical.

format Character: if "json", JSON will be retrieved and processed into a nested
list; any other value will return data frame.

download_args List: parameters to pass to the download function, which is
readr: :read_tsv by default, and jsonlite: :stream_inif format = "json".
Note: as these are both wrapped into a downloader using curl::curl, a
curl handle can be also passed here under the name handle.

references_by_resource Logical: if TRUE,, in the ‘references‘ column the
PubMed IDs will be prefixed with the names of the resources they are
coming from. If FALSE, the ‘references‘ column will be a list of unique
PubMed IDs.

add_counts Logical: if TRUE, the number of references and number of re-
sources for each record will be added to the result.

license Character: license restrictions. By default, data from resources allow-
ing "academic" use is returned by OmniPath. If you use the data for work
in a company, you can provide "commercial”" or "for-profit", which will re-
strict the data to those records which are supported by resources that allow
for-profit use.

password Character: password for the OmniPath web service. You can pro-
vide a special password here which enables the use of ‘license = "ignore"*
option, completely bypassing the license filter.

json_param List: parameters to pass to the ‘jsonlite::fromJSON* when pro-
cessing JSON columns embedded in the downloaded data. Such columns
are "extra_attrs" and "evidences". These are optional columns which pro-
vide a lot of extra details about interactions.

strict_evidences Logical: reconstruct the "sources" and "references" columns
of interaction data frames based on the "evidences" column, strictly filtering
them to the queried datasets and resources. Without this, the "sources" and

omnipath-interactions 163

"references" fields for each record might contain information for datasets
and resources other than the queried ones, because the downloaded records
are a result of a simple filtering of an already integrated data frame.

genesymbol_resource Character: "uniprot” (default) or "ensembl". The Om-
niPath web service uses the primary gene symbols as provided by UniProt.
By passing "ensembl" here, the UniProt gene symbols will be replaced by
the ones used in Ensembl. This translation results in a loss of a few records,
and multiplication of another few records due to ambiguous translation.

cache Logical: use caching, load data from and save to the. The cache directory
by default belongs to the user, located in the user’s default cache directory,
and named "OmnipathR". Find out about it by getOption("omnipathr.cachedir™).
Can be changed by omnipath_set_cachedir.

dorothea_levels
The confidence levels of the dorothea interactions (TF-target) which range from
A to D. Set to A and B by default.

types Character: interaction types, such as "transcriptional”, "post_transcriptional",
"post_translational", etc.

fields Character: additional fields (columns) to be included in the result. For a list of
available fields, see query_info.

exclude Character: names of datasets or resource to be excluded from the result. By
deafult, the records supported by only these resources or datasets will be re-
moved from the output. If strict_evidences = TRUE, the resource, reference
and causality information in the data frame will be reconstructed to remove all
information coming from the excluded resources.

Details

Post-translational (protein-protein, PPI) interactions

* omnipath: the OmniPath data as defined in the 2016 paper, an arbitrary optimum between
coverage and quality. This dataset contains almost entirely causal (stimulatory or inhibitory;
i.e. activity flow , according to the SBGN standard), physical interactions between pairs of
proteins, curated by experts from the literature.

* pathwayextra: activity flow interactions without literature references.
* kinaseextra: enzyme-substrate interactions without literature references.
» ligrecextra: ligand-receptor interactions without literature references.

* post_translational: all post-translational (protein-protein, PPI) interactions; this is the
combination of the omnipath, pathwayextra, kinaseextra and ligrecextra datasets.

TF-target (gene regulatory, GRN) interactions

e collectri: transcription factor (TF)-target interactions from CollecTRI.
* dorothea: transcription factor (TF)-target interactions from DoRothEA
» tf_target: transcription factor (TF)-target interactions from other resources

e transcriptional: all transcription factor (TF)-target interactions; this is the combination of
the collectri, dorothea and tf_target datasets.

164 omnipath-interactions

Post-transcriptional (miRNA-target) and other RNA related interactions

In these datasets we intend to collect the literature curated resources, hence we don’t include some
of the most well known large databases if those are based on predictions or high-throughput assays.

* mirna_target: miRNA-mRNA interactions
e tf_mirna: TF-miRNA interactions

¢ Incrna_mrna: IncRNA-mRNA interactions
Other interaction access functions

* small_molecule: interactions between small molecules and proteins. Currently this is a
small, experimental dataset that includes drug-target, ligand-receptor, enzyme-metabolite and
other interactions. In the future this will be largely expanded and divided into multiple
datasets.

e all_interactions: all the interaction datasets combined.

Value

A dataframe of molecular interactions.

A dataframe of literature curated, post-translational signaling interactions.

A dataframe containing activity flow interactions between proteins without literature reference
A dataframe containing enzyme-substrate interactions without literature reference

A dataframe containing ligand-receptor interactions including the ones without literature references
A dataframe containing post-translational interactions

A data frame of TF-target interactions from DoRothEA.

A dataframe containing TF-target interactions

A dataframe containing TF-target interactions.

A dataframe of TF-target interactions.

A dataframe containing miRNA-mRNA interactions

A dataframe containing TF-miRNA interactions

A dataframe containing IncRNA-mRNA interactions

A dataframe of small molecule-protein interactions

A dataframe containing all the datasets in the interactions query

See Also

* interaction_resources
e interaction_graph
e print_interactions

* annotated_network

e omnipath_interactions

* post_translational

omnipath-interactions 165

e interaction_resources
e all_interactions
e interaction_graph

e print_interactions

Examples

op <- omnipath(resources = c("CA1", "SIGNOR", "SignalLink3"))
op

interactions = omnipath_interactions(
resources = "Signalink3",
organism = 9606

pathways <- omnipath()
pathways

interactions <-
pathwayextra(
resources = c("BioGRID", "IntAct"),
organism = 9606

kinase_substrate <-
kinaseextra(
resources = c('PhosphoPoint', 'PhosphoSite'),
organism = 9606

ligand_receptor <- ligrecextra(
resources = c('HPRD', 'Guide2Pharma'),
organism = 9606

interactions <- post_translational(resources = "BioGRID")

dorothea_grn <- dorothea(
resources = c('DoRothEA', 'ARACNe-GTEx_DoRothEA'"),
organism = 9606,
dorothea_levels = c('A', 'B', 'C')

)

dorothea_grn
interactions <- tf_target(resources = c("DoRothEA”, "SIGNOR"))

grn <- transcriptional(resources = c("PAZAR", "ORegAnno”, "DoRothEA"))
grn

collectri_grn <- collectri()
collectri_grn

166 OmnipathR

interactions <- mirna_target(resources = c("miRTarBase"”, "miRecords”))
interactions <- tf_mirna(resources = "TransmiR")
interactions <- lncrna_mrna(resources = c("ncRDeathDB"))

What are the targets of aspirin?

interactions <- small_molecule(sources = "ASPIRIN")
The prostaglandin synthases:

interactions

interactions <- all_interactions(
resources = c("HPRD", "BioGRID"),
organism = 9606

OmnipathR The OmnipathR package

Description
OmnipathR is an R package built to provide easy access to the data stored in the OmniPath web
service:
https://omnipathdb.org/

And a number of other resources, such as BioPlex, ConsensusPathDB, EVEX, Guide to Pharmacol-
ogy (IUPHAR/BPS), Harmonizome, HTRIdb, InWeb InBioMap, KEGG Pathway, Pathway Com-
mons, Ramilowski et al. 2015, RegNetwork, ReMap, TF census, TRRUST and Vinayagam et al.
2011.

The OmniPath web service implements a very simple REST style API. This package make requests
by the HTTP protocol to retreive the data. Hence, fast Internet access is required for a propser use
of OmnipathR.

The package also provides some utility functions to filter, analyse and visualize the data. Fur-
thermore, OmnipathR features a close integration with the NicheNet method for ligand activity
prediction from transcriptomics data, and its R implementation nichenetr (available in CRAN).
Author(s)
Alberto Valdeolivas <<alvaldeolivas@gmail>> and Denes Turei <<turei.denes@gmail.com>>
and Attila Gabor <<gaborattila87@gmail.com>>
See Also
Useful links:

* https://r.omnipathdb.org/
* Report bugs at https://github.com/saezlab/OmnipathR/issues

https://omnipathdb.org/
https://r.omnipathdb.org/
https://github.com/saezlab/OmnipathR/issues

omnipath_cache_autoclean 167

Examples
Not run:
Download post-translational modifications:
enzsub <- enzyme_substrate(resources = c("PhosphoSite”, "SIGNOR"))

Download protein-protein interactions
interactions <- omnipath(resources = "Signalink3")

Convert to igraph objects:
enzsub_g <- enzsub_graph(enzsub = enzsub)
OPI_g <- interaction_graph(interactions = interactions)

Print some interactions:
print_interactions(head(enzsub))

interactions with references:
print_interactions(tail(enzsub), writeRefs = TRUE)

find interactions between kinase and substrate:
print_interactions(dplyr::filter(ptms,enzyme_genesymbol=="MAP2K1",
substrate_genesymbol=="MAPK3"))

find shortest paths on the directed network between proteins
print_path_es(shortest_paths(OPI_g, from = "TYRO3", to = "STAT3",
output = 'epath')$epath[[1]1], OPI_g)

find all shortest paths between proteins
print_path_vs(
all_shortest_paths(

enzsub_g,
from = "SRC",
to = "STAT1"
Y$res,
enzsub_g

End(Not run)

omnipath_cache_autoclean
Keeps only the latest versions of complete downloads

Description

Removes the old versions, the failed downloads and the files in the cache directory which are miss-

ing from the database. For more flexible operations use omnipath_cache_remove and omnipath_cache_clean.
Usage

omnipath_cache_autoclean()

168 omnipath_cache_clean_db

Value

Invisibl returns the cache database (list of cache records).

Examples

Not run:
omnipath_cache_autoclean()

End(Not run)

omnipath_cache_clean Removes the items from the cache directory which are unknown by the
cache database

Description

Removes the items from the cache directory which are unknown by the cache database

Usage

omnipath_cache_clean()

Value

Returns ‘NULL".

Examples

omnipath_cache_clean()

omnipath_cache_clean_db
Removes the cache database entries without existing files

Description

Removes the cache database entries without existing files

Usage

omnipath_cache_clean_db(...)

Arguments

Ignored.

omnipath_cache_download_ready 169

Value

Returns ‘NULL".

Examples

omnipath_cache_clean_db()

omnipath_cache_download_ready
Sets the download status to ready for a cache item

Description

Sets the download status to ready for a cache item

Usage

omnipath_cache_download_ready(version, key = NULL)

Arguments
version Version of the cache item. If does not exist a new version item will be created
key Key of the cache item

Value

Character: invisibly returns the version number of the cache version item.

Examples

bioc_url <- 'https://bioconductor.org/'

request a new version item (or retrieve the latest)
new_version <- omnipath_cache_latest_or_new(url = bioc_url)
check if the version item is not a finished download
new_version$status

[1] "unknown”

download the file

curl::curl_fetch_disk(bioc_url, new_version$path)

report to the cache database that the download is ready
omnipath_cache_download_ready(new_version)

now the status is ready:

version <- omnipath_cache_latest_or_new(url = bioc_url)
version$status

"ready”

version$dl_finished

[1] "2021-03-09 16:48:38 CET"

omnipath_cache_remove(url = bioc_url) # cleaning up

170 omnipath_cache_filter_versions

omnipath_cache_filter_versions
Filters the versions from one cache record

Description

Filters the versions based on multiple conditions: their age and status

Usage

omnipath_cache_filter_versions(
record,
latest = FALSE,
max_age = NULL,
min_age = NULL,
status = CACHE_STATUS$READY

)
Arguments
record A cache record
latest Return the most recent version
max_age The maximum age in days (e.g. 5: 5 days old or more recent)
min_age The minimum age in days (e.g. 5: 5 days old or older)
status Character vector with status codes. By default only the versions with ‘ready’
(completed download) status are selected
Value

Character vector with version IDs, NA if no version satisfies the conditions.

Examples

creating an example cache record

bioc_url <- 'https://bioconductor.org/'

version <- omnipath_cache_latest_or_new(url = bioc_url)
curl::curl_fetch_disk(bioc_url, version$path)
omnipath_cache_download_ready(version)

record <- dplyr::first(omnipath_cache_search('biocond'))

only the versions with status "ready”
version_numbers <- omnipath_cache_filter_versions(record, status = 'ready')
omnipath_cache_remove(url = bioc_url) # cleaning up

omnipath_cache_get 171

omnipath_cache_get Retrieves one item from the cache directory

Description

Retrieves one item from the cache directory

Usage
omnipath_cache_get(
key = NULL,
url = NULL,
post = NULL,

payload = NULL,
create = TRUE,

)
Arguments

key The key of the cache record

url URL pointing to the resource

post HTTP POST parameters as a list

payload HTTP data payload

create Create a new entry if doesn’t exist yet

Passed to omnipath_cache_record (internal function)

Value

Cache record: an existing record if the entry already exists, otherwise a newly created and inserted
record

Examples

create an example cache record

bioc_url <- 'https://bioconductor.org/'

version <- omnipath_cache_latest_or_new(url = bioc_url)
omnipath_cache_remove(url = bioc_url) # cleaning up

retrieve the cache record

record <- omnipath_cache_get(url = bioc_url)
recordskey

[1] "41346a200fb20d22a9df0@3aa70cf4d50bf88ab154a"
record$url

[1] "https://bioconductor.org/”

172 omnipath_cache_latest_or_new

omnipath_cache_key Generates a hash which identifies an element in the cache database

Description

Generates a hash which identifies an element in the cache database

Usage

omnipath_cache_key(url, post = NULL, payload = NULL)

Arguments
url Character vector with URLs
post List with the HTTP POST parameters or a list of lists if the url vector is longer
than 1. NULL for queries without POST parameters.
payload HTTP data payload. List with multiple items if the url vector is longer than 1.
NULL for queries without data.
Value

Character vector of cache record keys.

Examples

bioc_url <- 'https://bioconductor.org/'
omnipath_cache_key(bioc_url)
[1] "41346200fb20d2a9df@3aa70cf4d50bf88ab154a"

omnipath_cache_latest_or_new

The latest or a new version of a cache record

Description

Looks up a record in the cache and returns its latest valid version. If the record doesn’t exist or no
valid version available, creates a new one.

omnipath_cache_latest_or_new 173

Usage
omnipath_cache_latest_or_new(
key = NULL,
url = NULL,
post = NULL,

payload = NULL,
create = TRUE,

)
Arguments
key The key of the cache record
url URL pointing to the resource
post HTTP POST parameters as a list
payload HTTP data payload
create Logical: whether to create and return a new version. If FALSE only the latest
existing valid version is returned, if available.
Passed to omnipath_cache_get
Value

A cache version item.

Examples

Not run:
retrieve the latest version of the first cache record
found by the search keyword "bioplex”
latest_bioplex <-
omnipath_cache_latest_or_new(
names (omnipath_cache_search('bioplex'))[1]

)

latest_bioplex$dl_finished

[1] "2021-03-09 14:28:50 CET"

latest_bioplex$path

[1]1 "/home/denes/.cache/OmnipathR/378e0@def2ac97985f629-1.rds"

End(Not run)

create an example cache record

bioc_url <- 'https://bioconductor.org/'

version <- omnipath_cache_latest_or_new(url = bioc_url)
omnipath_cache_remove(url = bioc_url) # cleaning up

174 omnipath_cache_load

omnipath_cache_latest_version
Finds the most recent version in a cache record

Description

Finds the most recent version in a cache record

Usage

omnipath_cache_latest_version(record)

Arguments

record A cache record

Value

Character: the version ID with the most recent download finished time

omnipath_cache_load Loads an R object from the cache

Description

Loads the object from RDS format.

Usage
omnipath_cache_load(
key = NULL,
version = NULL,
url = NULL,
post = NULL,
payload = NULL
)
Arguments
key Key of the cache item
version Version of the cache item. If does not exist or NULL, the latest version will be
retrieved
url URL of the downloaded resource
post HTTP POST parameters as a list

payload HTTP data payload

omnipath_cache_move_in 175

Value

Object loaded from the cache RDS file.

See Also

omnipath_cache_save

Examples

url <- paste@(
"https://omnipathdb.org/intercell?resources=Adhesome,Almen2009, ',
'Baccin2019,CSPA,CellChatDB&license=academic’

)

result <- read.delim(url, sep = '\t')

omnipath_cache_save(result, url = url)

works only if you have already this item in the cache

intercell_data <- omnipath_cache_load(url = url)

class(intercell_data)

[1] "data.frame”

nrow(intercell_data)

[1] 16622
attr(intercell_data, 'origin')
[1] "cache”

basic example of saving and loading to and from the cache:
bioc_url <- 'https://bioconductor.org/'

bioc_html <- readChar(url(bioc_url), nchars = 99999)
omnipath_cache_save(bioc_html, url = bioc_url)

bioc_html <- omnipath_cache_load(url = bioc_url)

omnipath_cache_move_in
Moves an existing file into the cache

Description

Either the key or the URL (with POST and payload) must be provided.

Usage
omnipath_cache_move_in(
path,
key = NULL,
version = NULL,
url = NULL,
post = NULL,

payload = NULL,
keep_original = FALSE

176 omnipath_cache_remove

Arguments
path Path to the source file
key Key of the cache item
version Version of the cache item. If does not exist a new version item will be created
url URL of the downloaded resource
post HTTP POST parameters as a list
payload HTTP data payload

keep_original Whether to keep or remove the original file

Value

Character: invisibly returns the version number of the cache version item.

See Also

omnipath_cache_save

Examples

path <- tempfile()
saveRDS(rnorm(100), file = path)
omnipath_cache_move_in(path, url = 'the_download_address')

basic example of moving a file to the cache:

bioc_url <- 'https://bioconductor.org/'

html_file <- tempfile(fileext = '.html')
curl::curl_fetch_disk(bioc_url, html_file)
omnipath_cache_move_in(path = html_file, url = bioc_url)
omnipath_cache_remove(url = bioc_url) # cleaning up

omnipath_cache_remove Removes contents from the cache directory

Description
According to the parameters, it can remove contents older than a certain age, or contents having a
more recent version, one specific item, or wipe the entire cache.

Usage

omnipath_cache_remove(key = NULL, url = NULL, post = NULL,
payload = NULL, max_age = NULL, min_age = NULL, status = NULL,
only_latest = FALSE, wipe = FALSE, autoclean = TRUE)

omnipath_cache_remove 177

Arguments
key The key of the cache record
url URL pointing to the resource
post HTTP POST parameters as a list
payload HTTP data payload
max_age Age of cache items in days. Remove everything that is older than this age
min_age Age of cache items in days. Remove everything more recent than this age
status Remove items having any of the states listed here
only_latest Keep only the latest version
wipe Logical: if TRUE, removes all files from the cache and the cache database. Same
as calling omnipath_cache_wipe.
autoclean Remove the entries about failed downloads, the files in the cache directory which
are missing from the cache database, and the entries without existing files in the
cache directory
Value

Invisibly returns the cache database (list of cache records).

See Also

* omnipath_cache_wipe
e omnipath_cache_clean

e omnipath_cache_autoclean

Examples

Not run:
remove all cache data from the BioPlex database
cache_records <- omnipath_cache_search(
'bioplex',
ignore.case = TRUE

)

omnipath_cache_remove(names(cache_records))
remove a record by its URL
regnetwork_url <- 'http://www.regnetworkweb.org/download/human.zip’

omnipath_cache_remove(url = regnetwork_url)

remove all records older than 30 days
omnipath_cache_remove(max_age = 30)

for each record, remove all versions except the latest
omnipath_cache_remove(only_latest = TRUE)

End(Not run)

178 omnipath_cache_save

bioc_url <- 'https://bioconductor.org/'

version <- omnipath_cache_latest_or_new(url = bioc_url)
curl::curl_fetch_disk(bioc_url, version$path)
omnipath_cache_download_ready(version)

key <- omnipath_cache_key(bioc_url)
omnipath_cache_remove(key = key)

omnipath_cache_save Saves an R object to the cache

Description

Exports the object in RDS format, creates new cache record if necessary.

Usage
omnipath_cache_save(
data,
key = NULL,
version = NULL,
url = NULL,
post = NULL,
payload = NULL
)
Arguments
data An object
key Key of the cache item
version Version of the cache item. If does not exist a new version item will be created
url URL of the downloaded resource
post HTTP POST parameters as a list
payload HTTP data payload
Value

Returns invisibly the data itself.

Invisibly returns the ‘data‘.

See Also

omnipath_cache_move_in

omnipath_cache_search

Examples

mydata <- data.frame(a = c(1, 2, 3), b =c('a', 'b', 'c"))
omnipath_cache_save(mydata, url = 'some_dummy_address')
from_cache <- omnipath_cache_load(url = 'some_dummy_address')
from_cache

ab

#1 1 a

#22b

#33c

attr(from_cache, 'origin')

[1]1 "cache”

basic example of saving and loading to and from the cache:
bioc_url <- 'https://bioconductor.org/'

bioc_html <- readChar(url(bioc_url), nchars = 99999)
omnipath_cache_save(bioc_html, url = bioc_url)

bioc_html <- omnipath_cache_load(url = bioc_url)

179

omnipath_cache_search Searches for cache items

Description

Searches the cache records by matching the URL against a string or regexp.

Usage
omnipath_cache_search(pattern, ...)
Arguments
pattern String or regular expression.
Passed to grep
Value

List of cache records matching the pattern.

Examples

find all cache records from the BioPlex database
bioplex_cache_records <- omnipath_cache_search(
'bioplex',
ignore.case = TRUE

180 omnipath_cache_set_ext

omnipath_cache_set_ext
Sets the file extension for a cache record

Description

Sets the file extension for a cache record

Usage

omnipath_cache_set_ext(key, ext)

Arguments
key Character: key for a cache item, alternatively a version entry.
ext Character: the file extension, e.g. "zip".

Value

Returns ‘NULL".

Examples

bioc_url <- 'https://bioconductor.org/'

version <- omnipath_cache_latest_or_new(url = bioc_url)
version$path

[1]1 "/home/denes/.cache/OmnipathR/41346a00fb20d2a9df@3-1"
curl::curl_fetch_disk(bioc_url, version$path)

key <- omnipath_cache_key(url = bioc_url)
omnipath_cache_set_ext(key = key, ext = 'html')

version <- omnipath_cache_latest_or_new(url = bioc_url)
version$path

[1]1 "/home/denes/.cache/OmnipathR/41346a00fb20d2a9df@3-1.html"
record <- omnipath_cache_get(url = bioc_url)

record$ext

[1] "html”

omnipath_cache_remove(url = bioc_url) # cleaning up

omnipath_cache_update_status 181

omnipath_cache_update_status
Updates the status of an existing cache record

Description

Updates the status of an existing cache record

Usage

omnipath_cache_update_status(key, version, status,
dl_finished = NULL)

Arguments
key Key of the cache item
version Version of the cache item. If does not exist a new version item will be created
status The updated status value
dl_finished Timestamp for the time when download was finished, if ‘NULL* the value re-
mains unchanged
Value

Character: invisibly returns the version number of the cache version item.

Examples

bioc_url <- 'https://bioconductor.org/'

latest_version <- omnipath_cache_latest_or_new(url = bioc_url)
key <- omnipath_cache_key(bioc_url)
omnipath_cache_update_status(

key = key,
version = latest_version$number,
status = 'ready’,

dl_finished = Sys.time()
)

omnipath_cache_remove(url = bioc_url) # cleaning up

182 omnipath_config_path

omnipath_cache_wipe Permanently removes all the cache contents

Description

After this operation the cache directory will be completely empty, except an empty cache database
file.

Usage

omnipath_cache_wipe(...)

Arguments

Ignored.

Value

Returns ‘NULL".

See Also

omnipath_cache_remove

Examples

Not run:

omnipath_cache_wipe()

the cache is completely empty:
print(omnipathr.env$cache)

list()
list.files(omnipath_get_cachedir())
[1] "cache.json”

End(Not run)

omnipath_config_path Current config file path of OmnipathR

Description

Current config file path of OmnipathR

Current config file path for a certain package

omnipath_for_cosmos 183

Usage

omnipath_config_path(user = FALSE)

config_path(user = FALSE, pkg = "OmnipathR")

Arguments
user Logical: prioritize the user level config even if a config in the current working
directory is available.
pkg Character: name of the package.
Value

Character: path to the config file.

Examples

omnipath_config_path()

omnipath_for_cosmos OmniPath PPI for the COSMOS PKN

Description

OmniPath PPI for the COSMOS PKN

Usage

omnipath_for_cosmos(
organism = 9606L,
resources = NULL,
datasets = NULL,
interaction_types = NULL,
id_types = c("uniprot”, "genesymbol"),

)

Arguments
organism Character or integer: name or NCBI Taxonomy ID of the organism.
resources Character: names of one or more resources. Correct spelling is important.
datasets Character: one or more network datasets in OmniPath.

interaction_types
Character: one or more interaction type

184

id_types

Value

omnipath_load_config

Character: translate the protein identifiers to these ID types. Each ID type re-
sults two extra columns in the output, for the "source" and "target" sides of the
interaction, respectively. The default ID type for proteins is Esembl Gene ID,
and by default UniProt IDs and Gene Symbols are included. The UniProt IDs
returned by the web service are left intact, while the Gene Symbols are queried
from Ensembl. These Gene Symbols are different from the ones returned from
the web service, and match the Ensembl Gene Symbols used by other compo-
nents of the COSMOS PKN.

Further parameters to omnipath_interactions.

Data frame with the columns source, target and sign.

See Also

e cosmos_pkn

e omnipath-interactions

Examples

op_cosmos <- omnipath_for_cosmos()

op_cosmos

omnipath_load_config Load the package configuration from a config file

Description

Load the package configuration from a config file

Load the coniguration of a certain package

Usage

omnipath_load_config(path = NULL, title = "default”, user = FALSE, ...)

load_config(

path = NULL,
title = "default”,
user = FALSE,

pkg = "OmnipathR"”,

omnipath_log 185

Arguments
path Path to the config file.
title Load the config under this title. One config file might contain multple configu-
rations, each identified by a title. If the title is not available the first section of
the config file will be used.
user Force to use the user level config even if a config file exists in the current direc-
tory. By default, the local config files have prioroty over the user level config.
Passed to yaml: :yaml.load_file.
pkg Character: name of the package
Value

Invisibly returns the config as a list.

Examples

Not run:
load the config from a custom config file:
omnipath_load_config(path = 'my_custom_omnipath_config.yml')

End(Not run)

omnipath_log Browse the current OmnipathR log file

Description

Browse the current OmnipathR log file

Browse the latest log from a package

Usage
omnipath_log()
read_log(pkg = "OmnipathR")

Arguments

pkg Character: name of a package.

Value

Returns ‘NULL".

186

See Also

omnipath_logfile

Examples

Not run:
omnipath_log()
then you can browse the log file, and exit with g~

End(Not run)

omnipath_logfile

omnipath_logfile Path to the current OmnipathR log file

Description

Path to the current OmnipathR log file
Path to the current logfile of a package

Usage

omnipath_logfile()

logfile(pkg = "OmnipathR")

Arguments

pkg Character: name of a package.

Value

Character: path to the current logfile, or NULL if no logfile is available.

See Also

omnipath_log

Examples

omnipath_logfile()

[1] "/home/denes/omnipathr/omnipathr-log/omnipathr-20210309-1642.1log"

omnipath_msg 187

omnipath_msg Dispatch a message to the OmnipathR logger

Description

Any package or script can easily send log messages and establish a logging facility with the fantastic
‘logger package. This function serves the only purpose if you want to inject messages into the
logger of OmnipathR. Otherwise we recommend to use the ‘logger* package directly.

Usage
omnipath_msg(level, ...)
Arguments
level Character, numeric or class loglevel. A log level, if character one of the follow-
ings: "fatal", "error", "warn", "success", "info", "trace".
Arguments for string formatting, passed sprintf or str_glue.
Value

Returns ‘NULL".

Examples

omnipath_msg(
level = 'success',
'Talking to you in the name of OmnipathR, my favourite number is %d',
round(runif (1, 1, 10))

omnipath_query Download data from the OmniPath web service

Description

This is the most generic method for accessing data from the OmniPath web service. All other
functions retrieving data from OmniPath call this function with various parameters. In general,
every query can retrieve data in tabular or JSON format, the tabular (data frame) being the default.

188

Usage

omnipath_query(
query_type,

omnipath_query

organism = 9606L,
resources = NULL,
datasets = NULL,

types = NULL,
genesymbols =
fields = NULL

nyesn ,

’

default_fields = TRUE,
silent = FALSE,
logicals = NULL,

download_args

= list(),

format = "data.frame”,
references_by_resource = TRUE,

add_counts =

TRUE,

license = NULL,
password = NULL,
exclude = NULL,

json_param = list(),
strict_evidences = FALSE,
genesymbol_resource = "UniProt”,
cache = NULL,
)
Arguments
query_type Character: "interactions", "enzsub", "complexes", "annotations", or "intercell".
organism Character or integer: name or NCBI Taxonomy ID of the organism. Omni-
Path is built of human data, and the web service provides orthology translated
interactions and enzyme-substrate relationships for mouse and rat. For other or-
ganisms and query types, orthology translation will be called automatically on
the downloaded human data before returning the result.
resources Character vector: name of one or more resources. Restrict the data to these re-
sources. For a complete list of available resources, call the ‘<query_type>_resources'
functions for the query type of interst.
datasets Character vector: name of one or more datasets. In the interactions query type
a number of datasets are available. The default is caled "omnipath", and corre-
sponds to the curated causal signaling network published in the 2016 OmniPath
paper.
types Character vector: one or more interaction types, such as "transcriptional” or
"post_translational”. For a full list of interaction types see ‘query_info("interaction")$types*.
genesymbols Character or logical: TRUE or FALS or "yes" or "no". Include the ‘genesym-

bols‘ column in the results. OmniPath uses UniProt IDs as the primary identi-
fiers, gene symbols are optional.

omnipath_query

fields

default_fields

silent

logicals

download_args

format

189

Character vector: additional fields to include in the result. For a list of available
fields, call ‘query_info("interactions")*.

Logical: if TRUE, the default fields will be included.

Logical: if TRUE, no messages will be printed. By default a summary message
is printed upon successful download.

Character vector: fields to be cast to logical.

List: parameters to pass to the download function, which is readr: :read_tsv
by default, and jsonlite::stream_in if format = "json". Note: as these are
both wrapped into a downloader using curl::curl, a curl handle can be also
passed here under the name handle.

Character: if "json", JSON will be retrieved and processed into a nested list; any
other value will return data frame.

references_by_resource

add_counts

license

password

exclude

json_param

Logical: if TRUE,, in the ‘references‘ column the PubMed IDs will be prefixed
with the names of the resources they are coming from. If FALSE, the ‘refer-
ences‘ column will be a list of unique PubMed IDs.

Logical: if TRUE, the number of references and number of resources for each
record will be added to the result.

Character: license restrictions. By default, data from resources allowing "aca-
demic" use is returned by OmniPath. If you use the data for work in a company,
you can provide "commercial" or "for-profit", which will restrict the data to
those records which are supported by resources that allow for-profit use.

Character: password for the OmniPath web service. You can provide a special
password here which enables the use of ‘license = "ignore"* option, completely
bypassing the license filter.

Character vector: resource or dataset names to be excluded. The data will be
filtered after download to remove records of the excluded datasets and resources.

List: parameters to pass to the ‘jsonlite::fromJSON‘ when processing JSON
columns embedded in the downloaded data. Such columns are "extra_attrs" and
"evidences". These are optional columns which provide a lot of extra details
about interactions.

strict_evidences

Logical: reconstruct the "sources" and "references” columns of interaction data
frames based on the "evidences" column, strictly filtering them to the queried
datasets and resources. Without this, the "sources" and "references" fields for
each record might contain information for datasets and resources other than the
queried ones, because the downloaded records are a result of a simple filtering
of an already integrated data frame.

genesymbol_resource

Character: "uniprot" (default) or "ensembl". The OmniPath web service uses
the primary gene symbols as provided by UniProt. By passing "ensembl" here,
the UniProt gene symbols will be replaced by the ones used in Ensembl. This
translation results in a loss of a few records, and multiplication of another few
records due to ambiguous translation.

190 omnipath_save_config

cache Logical: use caching, load data from and save to the. The cache directory by de-
fault belongs to the user, located in the user’s default cache directory, and named
"OmnipathR". Find out about it by getOption("omnipathr.cachedir”). Can
be changed by omnipath_set_cachedir.

Additional parameters for the OmniPath web service. These parameters will
be processed, validated and included in the query string. Many parameters are
already explicitly set by the arguments above. A number of query type spe-
cific parameters are also available, learn more about these by the query_info
function. For functions more specific than omnipath_query, arguments for all
downstream functions are also passed here.

Value

Data frame (tibble) or list: the data returned by the OmniPath web service (or loaded from cache),
after processing. Nested list if the "format" parameter is "json", otherwise a tibble.

Examples

interaction_data <- omnipath_query("”interaction”, datasets = "omnipath")
interaction_data

omnipath_save_config Save the current package configuration

Description

Save the current package configuration

Save the configuration of a certain package

Usage
omnipath_save_config(path = NULL, title = "default”, local = FALSE)

save_config(path = NULL, title = "default”, local = FALSE, pkg = "OmnipathR")

Arguments
path Path to the config file. Directories and the file will be created if don’t exist.
title Save the config under this title. One config file might contain multiple configu-
rations, each identified by a title.
local Save into a config file in the current directory instead of a user level config file.
When loading, the config in the current directory has priority over the user level
config.

pkg Character: name of the package

omnipath_set_cachedir 191

Value

Returns ‘NULL".

Examples

Not run:

after this, all downloads will default to commercial licenses

i.e. the resources that allow only academic use will be excluded:
options(omnipathr.license = 'commercial')

omnipath_save_config()

End(Not run)

omnipath_set_cachedir Change the cache directory

Description

Change the cache directory

Usage

omnipath_set_cachedir(path = NULL)

Arguments
path Character: path to the new cache directory. If don’t exist, the directories will be
created. If the path is an existing cache directory, the package’s cache database
for the current session will be loaded from the database in the directory. If NULL,
the cache directory will be set to its default path.
Value

Returns NULL.

Examples

tmp_cache <- tempdir()
omnipath_set_cachedir(tmp_cache)

restore the default cache directory:
omnipath_set_cachedir()

192 omnipath_set_logfile_loglevel

omnipath_set_console_loglevel
Sets the log level for the console

Description

Use this method to change during a session which messages you want to be printed on the console.
Before loading the package, you can set it also by the config file, with the omnipathr.console_loglevel
key.

Usage

omnipath_set_console_loglevel(level)

Arguments

level Character or class ‘loglevel‘. The desired log level.

Value

Returns ‘NULL".

See Also

omnipath_set_logfile_loglevel

Examples

omnipath_set_console_loglevel('warn')
or:
omnipath_set_console_loglevel(logger: :WARN)

omnipath_set_logfile_loglevel
Sets the log level for the logfile

Description
Use this method to change during a session which messages you want to be written into the logfile.
Before loading the package, you can set it also by the config file, with the "omnipathr.loglevel" key.
Usage

omnipath_set_logfile_loglevel(level)

omnipath_set_loglevel 193

Arguments

level Character or class ‘loglevel‘. The desired log level.

Value

Returns ‘NULL".

See Also

omnipath_set_console_loglevel

Examples

omnipath_set_logfile_loglevel('info')
or:
omnipath_set_logfile_loglevel(logger: :INFO)

omnipath_set_loglevel Sets the log level for the package logger

Description

Sets the log level for the package logger
Sets the log level for any package

Usage

omnipath_set_loglevel(level, target = "logfile")

set_loglevel(level, target = "logfile"”, pkg = "OmnipathR")

Arguments
level Character or class ‘loglevel‘. The desired log level.
target Character, either ’logfile’ or ’console’
pkg Character: name of the package.

Value

Returns ‘NULL".

Examples

omnipath_set_loglevel(logger::FATAL, target = 'console')

194

omnipath_unlock_cache_db

omnipath_show_db

Built in database definitions

Description

Databases are resources which might be costly to load but can be used many times by functions
which usually automatically load and retrieve them from the database manager. Each database has
a lifetime and will be unloaded automatically upon expiry.

Usage

omnipath_show_db()

Value

A data frame with the built in database definitions.

Examples

database_definitions <- omnipath_show_db()
database_definitions

#
#

#
#
#
#
#
#
#
#
#

A tibble: 14 x 10
name last_used lifetime package
<chr> <dttm> <dbl> <chr>
1 Gene Onto. 2021-04-04 20:19:15 300 Omnipat.
2 Gene Onto. NA 300 Omnipat.
3 Gene Onto. NA 300 Omnipat.
4 Gene Onto. NA 300 Omnipat.
5 Gene Onto. NA 300 Omnipat.
... (truncated)
. with 4 more variables: latest_param <list>, loaded <lgl>,
key <chr>

loader
<chr>

go_ontol.
go_ontol.
go_ontol.
go_ontol.
go_ontol.

loader_p.
<list>
<named
<named
<named
<named
<named

=

db <list>,

omnipath_unlock_cache_db
Removes the lock file from the cache directory

Description

A lock file in the cache directory avoids simulatneous write and read. It’s supposed to be removed
after each read and write operation. This might not happen if the process crashes during such an
operation. In this case you can manually call this function.

Usage

omnipath_unlock_cache_db()

only_from 195

Value

Logical: returns TRUE if the cache was locked and now is unlocked; FALSE if it was not locked.

Examples

omnipath_unlock_cache_db()

only_from Recreate interaction data frame based on certain datasets and re-
sources

Description

Recreate interaction data frame based on certain datasets and resources

Usage

only_from(
data,
datasets = NULL,
resources = NULL,
exclude = NULL,

.keep = FALSE
)
Arguments
data An interaction data frame from the OmniPath web service with evidences col-
umn.
datasets Character: a vector of dataset labels. Only evidences from these datasets will be
used.
resources Character: a vector of resource labels. Only evidences from these resources will
be used.
exclude Character vector of resource names to be excluded.
.keep Logical: keep the "evidences" column.
Details

The OmniPath interactions database fully integrates all attributes from all resources for each inter-
action. This comes with the advantage that interaction data frames are ready for use in most of
the applications; however, it makes it impossible to know which of the resources and references
support the direction or effect sign of the interaction. This information can be recovered from
the "evidences" column. The "evidences" column preserves all the details about interaction prove-
nances. In cases when you want to use a faithful copy of a certain resource or dataset, this function

196 ontology_ensure_id

will help you do so. Still, in most of the applications the best is to use the interaction data as it is
returned by the web service.

Note: This function is automatically applied if the ‘strict_evidences® argument is passed to any
function querying interactions (e.g. omnipath-interactions).

Value

A copy of the interaction data frame restricted to the given datasets and resources.

See Also

e omnipath-interactions
* filter_evidences

e unnest_evidences

from_evidences

Examples
Not run:
ci <- collectri(evidences = TRUE)
ci <- only_from(ci, datasets = 'collectri')

End(Not run)

ontology_ensure_id Only ontology IDs

Description

Converts a mixture of ontology IDs and names to only IDs. If an element of the input is missing
from the chosen ontology it will be dropped. This can happen if the ontology is a subset (slim)
version, but also if the input is not a valid ID or name.

Usage
ontology_ensure_id(terms, db_key = "go_basic")
Arguments
terms Character: ontology IDs or term names.
db_key Character: key to identify the ontology database. For the available keys see
omnipath_show_db.
Value

Character vector of ontology IDs.

ontology_ensure_name 197

Examples

ontology_ensure_id(c('mitochondrion inheritance', 'G0:0001754'))
[1] "GO:0000001" "GO:0001754"

ontology_ensure_name Only ontology term names

Description

Converts a mixture of ontology IDs and names to only names. If an element of the input is missing
from the chosen ontology it will be dropped. This can happen if the ontology is a subset (slim)
version, but also if the input is not a valid ID or name.

Usage
ontology_ensure_name(terms, db_key = "go_basic")
Arguments
terms Character: ontology IDs or term names.
db_key Character: key to identify the ontology database. For the available keys see
omnipath_show_db.
Value

Character vector of ontology term names.

Examples

ontology_ensure_name(c('reproduction', 'G0:0001754', 'foo bar'))
[1] "eye photoreceptor cell differentiation” "reproduction”

ontology_name_id Translate between ontology IDs and names

Description
Makes sure that the output contains only valid IDs or term names. The input can be a mixture of
IDs and names. The order of the input won’t be preserved in the output.

Usage

ontology_name_id(terms, ids = TRUE, db_key = "go_basic")

198 organism_for

Arguments
terms Character: ontology IDs or term names.
ids Logical: the output should contain IDs or term names.
db_key Character: key to identify the ontology database. For the available keys see
omnipath_show_db.
Value

Character vector of ontology IDs or term names.

Examples

ontology_name_id(c('mitochondrion inheritance', 'reproduction'))
[1] "GO:0000001" "GO:0000003"
ontology_name_id(c('G0:0000001', 'reproduction'), ids = FALSE)
[1] "mitochondrion inheritance” "reproduction”

organism_for Make sure the resource supports the organism and it has the ID

Description

Make sure the resource supports the organism and it has the ID

Usage

organism_for(organism, resource, error = TRUE)

Arguments
organism Character or integer: name or NCBI Taxonomy ID of the organism.
resource Charater: name of the resource.
error Logical: raise an error if the organism is not supported in the resource. Other-
wise it only emits a warning.
Value

Character: the ID of the organism as it is used by the resource. NA if the organism can not be
translated to the required identifier type.

orthology_translate_column 199

Examples

organism_for (10116, 'chalmers-gem')

[1] "Rat”

organism_for (6239, 'chalmers-gem')

[1] "Worm”

organism_for('foobar', 'chalmers-gem')

Error in organism_for("foobar”, "chalmers-gem") :

Organism ~foobar™ (common_name: “NA™; common_name: ~NA™)

is not supported by resource ~chalmers-gem™. Supported organisms:
Human, Mouse, Rat, Zebrafish, Drosophila melanogaster (Fruit fly),
Caenorhabditis elegans (PRIJNA13758).

orthology_translate_column
Translate a column of identifiers by orthologous gene pairs

Description

Translate a column of identifiers by orthologous gene pairs

Usage

orthology_translate_column(
data,
column,
id_type = NULL,
target_organism = "mouse”,
source_organism = "human",
resource = "oma",

replace = FALSE,

one_to_many = NULL,
keep_untranslated = FALSE,
translate_complexes = FALSE,
uniprot_by_id_type = "entrez"

)
Arguments
data A data frame with the column to be translated.
column Name of a character column with identifiers of the source organism of type
‘id_type°.
id_type Type of identifiers in ‘column‘. Available ID types include "uniprot”, "entrez",

"non non

"ensg", "refseq" and "swissprot" for OMA, and "uniprot", "entrez", "genesym-
bol", "refseq" and "gi" for NCBI HomoloGene. If you want to translate an ID
type not directly available in your preferred resource, use first translate_ids
to translate to an ID type directly available in the orthology resource. If not
provided, it is assumed the column name is the ID type.

200 pathwaycommons_download

target_organism

Name or NCBI Taxonomy ID of the target organism.
source_organism

Name or NCBI Taxonomy ID of the source organism.

resource Character: source of the orthology mapping. Currently Orthologous Matrix
(OMA) and NCBI HomoloGene are available, refer to them by "oma" and "ho-
mologene", respectively.

replace Logical or character: replace the column with the translated identifiers, or create
a new column. If it is character, it will be used as the name of the new column.

one_to_many Integer: maximum number of orthologous pairs for one gene of the source or-
ganism. Genes mapping to higher number of orthologues will be dropped.
keep_untranslated
Logical: keep records without orthologous pairs. If ‘replace® is TRUE, this
option is ignored, and untranslated records will be dropped. Genes with more
than ‘one_to_many* orthologues will always be dropped.
translate_complexes
Logical: translate the complexes by translating their components.
uniprot_by_id_type
Character: translate NCBI HomoloGene to UniProt by this ID type. One of

non

"genesymbol", "entrez", "refseq" or "gi".

Value

The data frame with identifiers translated to other organism.

pathwaycommons_download
Interactions from PathwayCommons

Description

PathwayCommons (http://www.pathwaycommons.org/) provides molecular interactions from a
number of databases, in either BioPAX or SIF (simple interaction format). This function retrieves all
interactions in SIF format. The data is limited to the interacting pair and the type of the interaction.

Usage

pathwaycommons_download()

Value

A data frame (tibble) with interactions.

http://www.pathwaycommons.org/

pivot_annotations 201

Examples

pc_interactions <- pathwaycommons_download()
pc_interactions
A tibble: 1,884,849 x 3

from type to

<chr> <chr> <chr>
1 AIBG controls-expression-of A2M

2 AIBG interacts-with ABCC6
3 AIBG interacts-with ACE2

4 AIBG interacts-with ADAM10
5 AIBG interacts-with ADAM17
. with 1,884,839 more rows

pivot_annotations Converts annotation tables to a wide format

Description
Use this method to reconstitute the annotation tables into the format of the original resources. With
the ‘wide=TRUE‘ option annotations applies this function to the downloaded data.

Usage

pivot_annotations(annotations)

Arguments
annotations A data frame of annotations downloaded from the OmniPath web service by
annotations.
Value

A wide format data frame (tibble) if the provided data contains annotations from one resource,
otherwise a list of wide format tibbles.

See Also
annotations
Examples
single resource: the result is a data frame
disgenet <- annotations(resources = "DisGeNet")
disgenet <- pivot_annotations(disgenet)
disgenet
A tibble: 126,588 x 11
uniprot genesymbol entity_type disease type score dsi dpi

<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>

202

#
#
#
#
#
#
#

#
#

1
2
3
4
5

Po4217
Po4217
P01023
P01023
P01023

preppi_download

A1BG protein Schizophren. dise. ©.3 0.7 0.538
A1BG protein Hepatomegaly phen. ©.3 0.7 ©.538
A2M protein Fibrosis, L. dise. ©.3 0.529 0.769
A2M protein Acute kidne. dise. 0.3 @.529 0.769
A2M protein Mental Depr. dise. 0.3 ©0.529 0.769

. with 126,583 more rows, and 3 more variables: nof_pmids <dbl>,

nof_snps <dbl>, source <chr>

multiple resources: the result is a list
annot_long <- annotations(

)

resources

= c("DisGeNet"”, "SignalLink_function”, "DGIdb", "kinase.com")

annot_wide <- pivot_annotations(annot_long)
names(annot_wide)

[1] "DGIdb" "DisGeNet” "kinase.com”
[4] "SignalLink_function”
annot_wide$kinase.com
A tibble: 825 x 6
uniprot genesymbol entity_type group family subfamily
<chr> <chr> <chr> <chr> <chr> <chr>
1 P31749 AKT1 protein AGC Akt NA
2 P31751 AKT2 protein AGC Akt NA
3 Q9Y243 AKT3 protein AGC Akt NA
4 014578 CIT protein AGC DMPK CRIK
5 Q09013 DMPK protein AGC DMPK GEK
. with 815 more rows
preppi_download Interactions from PrePPI

Description

Retrieves predicted protein-protein interactions from the PrePPI database (http://honig.c2b2.
columbia.edu/preppi). The interactions in this table are supposed to be correct with a > 0.5
probability.

Usage

preppi_download(...)

Arguments

Minimum values for the scores. The available scores are: str, protpep, str_max,
red, ort, phy, coexp, go, total, exp and final. Furthermore, an operator can be
passed, either .op='&' or .op = '| ', which is then used for combined filtering
by multiple scores.

http://honig.c2b2.columbia.edu/preppi
http://honig.c2b2.columbia.edu/preppi

preppi_download

Details

203

PrePPI is a combination of many prediction methods, each resulting a score. For an explanation
of the scores see https://honiglab.c2b2.columbia.edu/hfpd/help/Manual.html. The mini-
mum, median and maximum values of the scores:

Value

A data frame (tibble) of interactions with scores, databases and literature references.

str
protpep
str_max
red

ort

phy
coexp
go
total
exp
final

See Also

| Minimum

— 0O 0O 0O 0O OO0

600

preppi_filter

Examples

| Median

N
N
N

preppi <- preppi_download()
preppi
A tibble: 1,545,7
protl1 prot2 str_score protpep_score str_max_score red_score ort_score

#

% ¥ o

#

.
#
#

<chr>
Q131.
Po64.
Q7Z6.
P370.
0004 .

g~ w N -

<chr>
P146.
Q96N.
Q8NC.
P154. 4
QINR.

10 x 15

<dbl>
18.6
1.83
4.57
85.
34.0

| Maximum

<dbl>
6.45
14.3
Q
Q
Q

24.4

2.42
45.3
181

106,197,000,000

4,626
4.97e14

<dbl>
18.6
14.3
4.57
485.
34.0

<dbl>
4.25
4.25
Q
1.77
0.512

<dbl>
0.615
Q

0
0.615
0

with 1,545,700 more rows, and 8 more variables: phy_score <dbl>,
coexp_score <dbl>, go_score <dbl>, total_score <dbl>, dbs <chr>,
pubs <chr>, exp_score <dbl>, final_score <dbl>

https://honiglab.c2b2.columbia.edu/hfpd/help/Manual.html

204 preppi_filter

preppi_filter Filter PrePPlI interactions by scores

Description

Filter PrePPI interactions by scores

Usage
preppi_filter(data, ..., .op = "&")
Arguments

data A data frame of PrePPI interactions as provided by preppi_download.
Minimum values for the scores. The available scores are: str, protpep, str_max,
red, ort, phy, coexp, go, total, exp and final. See more about the scores at
preppi_download.

.op The operator to combine the scores with: either '&' or '|'. With the former,
only records where all scores are above the threshold will be kept; with the latter,
records where at least one score is above its threshold will be kept.

Value

The input data frame (tibble) filtered by the score thresholds.

See Also

preppi_download

Examples

preppi <- preppi_download()

preppi_filtered <- preppi_filter(preppi, red = 10, str = 4.5, ort = 1)
nrow(preppi_filtered)

[1] 8443

print_bma_motif_es

205

print_bma_motif_es Prints BMA motifs to the screen from a sequence of edges

Description

The motifs can be copy-pasted into a BMA canvas.

Usage

print_bma_motif_es(edge_seq, G, granularity = 2)

Arguments
edge_seq An igraph edge sequence.
G An igraph graph object.
granularity Numeric: granularity value.
Value

Returns ‘NULL".

Examples

interactions <- omnipath(resources = "ARN")
graph <- interaction_graph(interactions)
print_bma_motif_es(igraph::E(graph)[1], graph)

{"Model”: {

"Name": "Omnipath motif",
"Variables":[{

"Name" : "ULK1",
"1d” 1,

"RangeFrom”:0,
"RangeTo": 2,

"Formula":""

3

{

"Name": "ATG13",
#

1,

... (truncated)

33

206 print_interactions

print_bma_motif_vs Prints BMA motifs to the screen from a sequence of nodes

Description

The motifs can be copy-pasted into a BMA canvas.

Usage

print_bma_motif_vs(node_seq, G)

Arguments
node_seq An igraph node sequence.
G An igraph graph object.
Value

Returns ‘NULL".

Examples

interactions <- omnipath(resources = "ARN")

graph <- interaction_graph(interactions)

print_bma_motif_vs(
igraph::all_shortest_paths(

graph,
from = '"ULK1',
to = 'ATG13'

d$res,

graph

)
print_interactions Print OmniPath interactions
Description

Prints the interactions or enzyme-substrate relationships in a nice format.

Usage

print_interactions(interactions, refs = FALSE)

print_path_es 207

Arguments

interactions Dataframe with the interactions generated by any of the functions in omnipath-interactions.

refs Logical: include PubMed IDs where available.

Value

Returns ‘NULL".

Examples

enzsub <- enzyme_substrate()
print_interactions(head(enzsub))
print_interactions(tail(enzsub), refs = TRUE)
print_interactions(

dplyr::filter(

enzsub,

enzyme_genesymbol == 'MAP2K1',

substrate_genesymbol == 'MAPK3'

)
)
signor <- omnipath(resources = "SIGNOR")
print_interactions(head(signor))
source interaction target n_resources
6 MAPK14 (Q16539) ==(+)==> MAPKAPK2 (P49137) 23
4 TRPM7 (Q96QT4) ==(+)==> ANXA1 (P04083) 10
1 PRKG1 (Q13976) ==(-)==> TRPC3 (Q13507) 8
2 PTPN1 (P18031) ==(-)==> TRPV6 (Q9H1DQ) 6
5 PRKACA (P17612) ==(-)==> MCOLN1 (Q9GZU1) 6
3 RACK1 (P63244) ==(-)==> TRPM6 (Q9BX84) 2
print_path_es Prints network paths in an edge sequence
Description

Pretty prints the interactions in a path.

Usage

print_path_es(edges, G)

Arguments

edges An igraph edge sequence object.

G igraph object (from ptms or any interaction dataset)

208

Value

Returns ‘NULL".

See Also

e print_path_vs

Examples

interactions <- omnipath(resources = "Signalink3")
OPI_g <- interaction_graph(interactions = interactions)
print_path_es(
igraph: :shortest_paths(
OPI_g,
from = 'TYRO3',
to = 'STAT3',
output = 'epath'
Y$epath[[11],
OPI_g

print_path_vs

print_path_vs Print networks paths given by node sequence

Description

Prints the interactions in the path in a nice format.

Usage

print_path_vs(nodes, G)

Arguments

nodes An igraph node sequence object.

G An igraph graph object (from ptms or interactions)
Value

Returns ‘NULL".

See Also

print_path_es

pubmed_open 209

Examples

interactions <- omnipath(resources = "SignalLink3")
OPI_g <- interaction_graph(interactions = interactions)
print_path_vs(

igraph::all_shortest_paths(

OPI_g,
from = 'TYRO3',
to = 'STAT3'
)$vpath,
OPI_g
)
enzsub <- enzyme_substrate(resources=c("PhosphoSite”, "SIGNOR"))

enzsub_g <- enzsub_graph(enzsub)
print_path_vs(
igraph::all_shortest_paths(

enzsub_g,
from = 'SRC',
to = 'STAT1'

Y$res,

enzsub_g

)
pubmed_open Open one or more PubMed articles
Description

Open one or more PubMed articles

Usage
pubmed_open(pmids, browser = NULL, sep = ";", max_pages = 25L)
Arguments
pmids Character or numberic vector of one or more PubMed IDs.
browser Character: name of the web browser executable. If ‘NULL®, the default web
browser will be used.
sep Character: split the PubMed IDs by this separator.
max_pages Numeric: largest number of pages to open. This is to prevent opening hundreds
or thousands of pages at once.
Value

Returns ‘NULL".

210 ramilowski_download

Examples

interactions <- omnipath()
pubmed_open(interactions$references[1])

query_info OmniPath query parameters

Description
All parameter names and their possible values for a query type. Note: parameters with ‘NULL*
values have too many possible values to list them.

Usage

query_info(query_type)

Arguments

query_type Character: interactions, annotations, complexes, enz_sub or intercell.

Value

A named list with the parameter names and their possible values.

Examples

ia_param <- query_info('interactions')
ia_param$datasets[1:5]
[1] "dorothea” "kinaseextra” "ligrecextra” "lncrna_mrna

non

mirnatarget”

ramilowski_download Downloads ligand-receptor interactions from Ramilowski et al. 2015

Description
Curated ligand-receptor pairs from Supplementary Table 2 of the article "A draft network of ligand-
receptor mediated multicellular signaling in human" (https://www.nature.com/articles/ncomms8866).
Usage

ramilowski_download()

Value

A data frame (tibble) with interactions.

https://www.nature.com/articles/ncomms8866

ramp_id_mapping_table 211

Examples

rami_interactions <- ramilowski_download()
rami_interactions

A tibble: 2,557 x 16

Pair.Name Ligand.Approved. Ligand.Name Receptor.Approv.

<chr> <chr> <chr> <chr>
1 A2M_LRP1 A2M alpha-2-ma. LRP1

2 AANAT_MT. AANAT aralkylami. MTNRTA
3 AANAT_MT. AANAT aralkylami. MTNR1B
4 ACE_AGTR2 ACE angiotensi. AGTR2
5 ACE_BDKR. ACE angiotensi. BDKRB2

. with 2,547 more rows, and 12 more variables: Receptor.Name <chr>,
DLRP <chr>, HPMR <chr>, IUPHAR <chr>, HPRD <chr>,

STRING.binding <chr>, STRING.experiment <chr>, HPMR.Ligand <chr>,
HPMR.Receptor <chr>, PMID.Manual <chr>, Pair.Source <chr>,

Pair.Evidence <chr>

ramp_id_mapping_table Pairwise ID translation table from RaMP database

Description

Pairwise ID translation table from RaMP database

Usage
ramp_id_mapping_table(from, to, version = "2.5.4")
Arguments
from Character or Symbol. Name of an identifier type.
to Character or Symbol. Name of an identifier type.
version Character. The version of RaMP to download.
Value

Dataframe of pairs of identifiers.

See Also

* ramp_sqlite

* ramp_tables

* ramp_table

* translate_ids

e id_types

212 ramp_id_type

e hmdb_table

e uniprot_full_id_mapping_table
* uniprot_id_mapping_table

e ensembl_id_mapping_table

e chalmers_gem_id_mapping_table

Examples

ramp_id_mapping_table('hmdb', 'kegg')

ramp_id_type RaMP identifier type label

Description

RaMP identifier type label

Usage
ramp_id_type(label)

Arguments

label Character: an ID type label, as shown in the table returned by id_types

Value

Character: the RaMP specific ID type label, or the input unchanged if it could not be translated (still
might be a valid identifier name). These labels should be valid value names, as used in RaMP SQL
database.

See Also
e chalmers_gem_id_type
* uniprot_id_type
* ensembl_id_type
e uploadlists_id_type

Examples

ramp_id_type("rhea")
[1] "rhea-comp”

ramp_sqlite 213

ramp_sqlite Download and open RaMP database SQLite

Description

Download and open RaMP database SQLite

Usage

ramp_sqlite(version = RAMP_LATEST_VERSION)

Arguments

version Character. The version of RaMP to download.

Value

SQLite connection.

See Also

e ramp_tables

Examples

sqlite_con <- ramp_sqglite()

ramp_table Return table from RaMP database

Description

Return table from RaMP database

Usage

ramp_table(name, version = RAMP_LATEST_VERSION)

Arguments
name Character. The name of the RaMP table to fetch.
version Character. The version of RaMP to download.
Value

A data frame (tibble) of one table from the RaMP SQLite database.

214

See Also

* ramp_sqglite

* ramp_tables

Examples

ramp_table('source')

ramp_tables

ramp_tables List tables in RaMP database

Description

List tables in RaMP database

Usage

ramp_tables(version = RAMP_LATEST_VERSION)

Arguments

version Character. The version of RaMP to download.

Value

Character vector of table names in the RaMP SQLite database.

See Also

e ramp_sqlite

Examples

ramp_tables()

regnetwork_directions

215

regnetwork_directions Transcription factor effects from RegNetwork

Description

Transcription factor effects from RegNetwork

Usage

regnetwork_directions(organism = "human")
Arguments

organism Character: either human or mouse.
Value

A data frame (tibble) of TF-target interactions with effect signs.

Examples

regn_dir <- regnetwork_directions()

regn_dir

A tibble: 3,954 x 5

source_genesymb. source_entrez target_genesymb. target_entrez
<chr> <chr> <chr> <chr>

1 AHR 196 CDKN1B 1027

2 APLNR 187 PIK3C3 5289

3 APLNR 187 PIK3R4 30849

4 AR 367 KLK3 354

5 ARNT 405 ALDOA 226

. with 3,944 more rows, and 1 more variable: effect <dbl>

regnetwork_download Interactions from RegNetwork

Description

Downloads transcriptional and post-transcriptional regulatory interactions from the RegNetwork
database (http://www.regnetworkweb.org/). The information about effect signs (stimulation or
inhibition), provided by regnetwork_directions are included in the result.

Usage

regnetwork_download(organism = "human")

http://www.regnetworkweb.org/

216 relations_list_to_table

Arguments

organism Character: either human or mouse.

Value

Data frame with interactions.

Examples

regn_interactions <- regnetwork_download()
regn_interactions
A tibble: 372,778 x 7

source_genesymb. source_entrez target_genesymb. target_entrez
<chr> <chr> <chr> <chr>

1 USF1 7391 S100A6 6277

2 USF1 7391 DUSP1 1843

3 USF1 7391 C4A 720

4 USF1 7391 ABCA1 19

5 TP53 7157 TP73 7161

. with 372,768 more rows, and 3 more variables: effect <dbl>,
source_type <chr>, target_type <chr>

relations_list_to_table
Table from a nested list of ontology relations

Description

Converting the nested list to a table is a more costly operation, it takes a few seconds. Best to do
it only once, or pass tables = TRUE to obo_parser, and convert the data frame to list, if you also
need it in list format.

Usage

relations_list_to_table(relations, direction = NULL)

Arguments
relations A nested list of ontology relations (the "relations" element of the list returned by
obo_parser in case its argument ‘tables‘ is FALSE).
direction Override the direction (i.e. child -> parents or parent -> children). The nested

lists produced by functions in the current package add an attribute "direction"
thus no need to pass this value. If the attribute and the argument are both miss-
ing, the column will be named simply "side2" and it won’t be clear whether the
relations point from "term" to "side2" or the other way around. The direction
should be a character vector of length 2 with the values "parents" and "children".

relations_table_to_graph 217

Value

The relations converted to a data frame (tibble).

See Also

e swap_relations
e relations_table_to_list

e obo_parser

Examples

goslim_url <-
"http://current.geneontology.org/ontology/subsets/goslim_generic.obo"

path <- tempfile()

curl::curl_fetch_disk(goslim_url, path)

obo <- obo_parser(path, tables = FALSE)

unlink(path)

rel_tbl <- relations_list_to_table(obo$relations)

relations_table_to_graph
Graph from a table of ontology relations

Description

Graph from a table of ontology relations

Usage

relations_table_to_graph(relations)

Arguments
relations A data frame of ontology relations (the "relations" element of the list returned
by obo_parser in case its argument ‘tables‘ is TRUE).
Details

By default the relations point from child to parents, the edges in the graph will be of the same
direction. Use swap_relations on the data frame to reverse the direction.

Value

The relations converted to an igraph graph object.

218 relations_table_to_list

Examples

Not run:
go <- get_db('go_basic')
go_graph <- relations_table_to_graph(go$relations)

End(Not run)

relations_table_to_list
Nested list from a table of ontology relations

Description

Nested list from a table of ontology relations

Usage

relations_table_to_list(relations)

Arguments
relations A data frame of ontology relations (the "relations" element of the list returned
by obo_parser in case its argument ‘tables‘ is TRUE).
Value

The relations converted to a nested list.

See Also

* relations_list_to_table
* swap_relations

e obo_parser

Examples

goslim_url <-
"http://current.geneontology.org/ontology/subsets/goslim_generic.obo"

path <- tempfile()

curl::curl_fetch_disk(goslim_url, path)

obo <- obo_parser(path, tables = TRUE)

unlink(path)

rel_list <- relations_table_to_list(obo$relations)

remap_dorothea_download 219

remap_dorothea_download
Downloads TF-target interactions from ReMap

Description

ReMap (http://remap.univ-amu.fr/) is a database of ChIP-Seq experiments. It provides raw
and merged peaks and CRMs (cis regulatory motifs) with their associations to regulators (TFs). TF-
target relationships can be derived as it is written in Garcia-Alonso et al. 2019: "For ChIP-seq, we
downloaded the binding peaks from ReMap and scored the interactions between each TF and each
gene according to the distance between the TFBSs and the genes’ transcription start sites. We eval-
uated different filtering strategies that consisted of selecting only the top-scoring 100, 200, 500, and
1000 target genes for each TE." (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/
#s1title). This function returns the top TF-target relationships as used in DoRothEA: https:
//github.com/saezlab/dorothea/blob/master/inst/scripts/@2_chip_seq.R).

Usage

remap_dorothea_download()

Value

Data frame with TF-target relationships.

See Also

remap_tf_target_download

Examples

remap_interactions <- remap_dorothea_download()
remap_interactions

A tibble: 136,988 x 2

tf target

<chr> <chr>

ADNP ABCC1

ADNP ABCC6

ADNP ABHD5

ADNP ABT1

ADNP AC002066.1

. with 136,978 more rows

g A w N =

#
#
#
#
#
#
#

http://remap.univ-amu.fr/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title
https://github.com/saezlab/dorothea/blob/master/inst/scripts/02_chip_seq.R
https://github.com/saezlab/dorothea/blob/master/inst/scripts/02_chip_seq.R

220 remap_filtered

remap_filtered Downloads TF-target interactions from ReMap

Description

Downloads the ReMap TF-target interactions as processed by Garcia-Alonso et al. (https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title) and filters them based on a score thresh-
old, the top targets and whether the TF is included in the TF census (Vaquerizas et al. 2009). The
code for filtering is adapted from DoRothEA, written by Christian Holland.

Usage
remap_filtered(score = 100, top_targets = 500, only_known_tfs = TRUE)

Arguments
score Numeric: a minimum score between 0 and 1000, records with lower scores will
be excluded. If NULL no filtering performed.
top_targets Numeric: the number of top scoring targets for each TF. Essentially the maxi-

mum number of targets per TF. If NULL the number of targets is not restricted.

only_known_tfs Logical: whether to exclude TFs which are not in TF census.

Value

Data frame with TF-target relationships.

See Also

e remap_tf_target_download
e remap_filtered

e tfcensus_download

Examples

Not run:

remap_interactions <- remap_filtered()
nrow(remap_interactions)

[1] 145680

remap_interactions <- remap_filtered(top_targets = 100)
remap_interactions
A tibble: 30,330 x 2

source_genesymbol target_genesymbol
<chr> <chr>

1 ADNP ABCC1

2 ADNP ABT1

3 ADNP AC006076.1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title

remap_tf_target_download 221

4 ADNP AC007792.1
5 ADNP AC011288.2
. with 30,320 more rows

End(Not run)

remap_tf_target_download
Downloads TF-target interactions from ReMap

Description

ReMap (http://remap.univ-amu.fr/) is a database of ChIP-Seq experiments. It provides raw
and merged peaks and CRMs (cis regulatory motifs) with their associations to regulators (TFs). TF-
target relationships can be derived as it is written in Garcia-Alonso et al. 2019: "For ChIP-seq, we
downloaded the binding peaks from ReMap and scored the interactions between each TF and each
gene according to the distance between the TFBSs and the genes’ transcription start sites. We eval-
uated different filtering strategies that consisted of selecting only the top-scoring 100, 200, 500, and
1000 target genes for each TE." (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/
#s1title). This function retrieves the full processed TF-target list from the data deposited in
https://zenodo.org/record/3713238.

Usage

remap_tf_target_download()

Value

Data frame with TF-target relationships.

See Also

* remap_dorothea_download

e remap_filtered

Examples

Not run:

remap_interactions <- remap_tf_target_download()
remap_interactions

A tibble: 9,546,470 x 4

source_genesymbol target_genesymbol target_ensembl score
<chr> <chr> <chr> <dbl>
1 ADNP PTPRS ENSG00000105426.16 1000
2 AFF4 PRKCH ENSG00000027075.14 1000
3 AHR CTNND2 ENSG00000169862.18 1000
4 AR PDE4D ENSG00000113448.18 1000

http://remap.univ-amu.fr/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673718/#s1title
https://zenodo.org/record/3713238

222 reset_config

5 ARIDIA PLEC ENSG00000178209.14 1000
. with 9,546,460 more rows

End(Not run)

reset_config Restore the built-in default values of all config parameters of a pack-
age

Description

Restore the built-in default values of all config parameters of a package

Restore the built-in default values of all config parameters of OmnipathR

Usage

reset_config(save = NULL, reset_all = FALSE, pkg = "OmnipathR")

omnipath_reset_config(...)

Arguments
save If a path, the restored config will be also saved to this file. If TRUE, the config
will be saved to the current default config path (see omnipath_config_path).
reset_all Reset to their defaults also the options already set in the R options.
pkg Character: name of a package
Ignored.
Value

The config as a list.

See Also

omnipath_load_config, omnipath_save_config

Examples

Not run:

restore the defaults and write them to the default config file:
omnipath_reset_config()

omnipath_save_config()

End(Not run)

resources 223

resources Retrieve the available resources for a given query type

Description
Collects the names of the resources available in OmniPath for a certain query type and optionally
for a dataset within that.

Usage

resources(query_type, datasets = NULL, generic_categories = NULL)

Arguments
query_type one of the query types ‘interactions‘, ‘enz_sub‘, ‘complexes‘, ‘annotations‘ or
‘intercell
datasets currently within the ‘interactions‘ query type only, multiple datasets are avail-

able: ‘omnipath‘, ‘kinaseextra‘, ‘pathwayextra‘, ‘ligrecextra‘, ‘dorothea‘, ‘tf_target’,
‘tf_mirna‘, ‘mirnatarget‘ and ‘Incrna_mrna‘.

generic_categories
for the ‘intercell® query type, restrict the search for some generic categories e.g.
‘ligand* or ‘receptor®.

Value

a character vector with resource names

Examples
resources(query_type = "interactions")
resources_colname Name of the column with the resources
Description

Unfortunately the column title is different across the various query types in the OmniPath web
service, so we need to guess.

Usage

resources_colname(data)

Arguments

data A data frame downloaded by any import_. .. function in the current package.

224

Value

Character: the name of the column, if any of the column names matches.

Examples

co <- complexes()
resources_colname(co)
[1] "sources”

resource_info

resources_in Collect resource names from a data frame

Description

Collect resource names from a data frame

Usage

resources_in(data)

Arguments

data A data frame from an OmniPath query.

Value

Character: resource names occuring in the data frame.

Examples

pathways <- omnipath_interactions()
resources_in(pathways)

resource_info OmniPath resource information

Description

The ‘resources‘ query type provides resource metadata in JSON format. Here we retrieve this JSON

and return it as a nested list structure.

Usage

resource_info()

show_network 225

Value

A nested list structure with resource metadata.

Examples

resource_info()

show_network Visualize node neighborhood with SigmaJS

Description

This function takes an OmniPath interaction data frame as input and returns a sigmalS object for
the subgraph formed by the neighbors of a node of interest.

Usage

show_network(interactions, node = NULL)

Arguments

interactions An OmniPath interaction data frame.

node The node of interest.

Value

A sigmalS object, check http://sigmajs.john-coene.com/index.html for further details and customiza-
tion options.

Examples

Not run:

get interactions from omnipath

interactions <- omnipath()

create and plot the network containing ATM neighbors
viz_sigmajs_neighborhood(interactions_df = interactions, int_node = "ATM")

End(Not run)

226 simplify_intercell_network

signed_ptms Causal effect enzyme-PTM interactions

Description
Enzyme-substrate data does not contain sign (activation/inhibition), we generate this information
based on the interaction network.

Usage

signed_ptms(
enzsub = enzyme_substrate(),
interactions = omnipath_interactions()

Arguments

enzsub Enzyme-substrate data frame generated by enzyme_substrate

interactions interaction data frame generated by an OmniPath interactions query: omnipath-interactions

Value

Data frame of enzyme-substrate relationships with is_inhibition and is_stimulation columns.

See Also

e enzyme_substrate

e omnipath-interactions

Examples

enzsub <- enzyme_substrate(resources = c("PhosphoSite”, "SIGNOR"))
interactions <- omnipath_interactions()
enzsub <- signed_ptms(enzsub, interactions)

simplify_intercell_network
Simplify an intercell network

Description

The intercellular communication network data frames, created by intercell_network, are com-
binations of a network data frame with two copies of the intercell annotation data frames, all of
them already having quite some columns. Here we keep only the names of the interacting pair, their
intercellular communication roles, and the minimal information of the origin of both the interaction
and the annotations. Optionally further columns can be selected.

static_table 227

Usage
simplify_intercell_network(network, ...)
Arguments
network An intercell network data frame, as provided by intercell_network.
Optional, further columns to select.
Value

An intercell network data frame with some columns removed.

See Also

e intercell_network

e filter_intercell_network

e unique_intercell_network

e intercell

e intercell_categories

* intercell_generic_categories
e intercell_summary

Examples

icn <- intercell_network()
icn_s <- simplify_intercell_network(icn)

static_table Retrieve a static table from OmniPath

Description

A few resources and datasets are available also as plain TSV files and can be accessed without TLS.
The purpose of these tables is to make the most often used OmniPath data available on computers
with configuration issues. These tables are not the recommended way to access OmniPath data, and
a warning is issued each time they are accessed.

Usage

static_table(
query,
resource,
organism = 9606L,
strict_evidences = TRUE,
wide = TRUE,
dorothea_levels = c("A", "B", "C")

228 static_tables

Arguments
query Character: a query type such as "annotations" or "interactions".
resource Character: name of the resource or dataset, such as "CollecTRI" or "PROGENy".
organism Integer: NCBI Taxonomy of the organism: 9606 for human, 10090 for mouse

and 10116 for rat.

strict_evidences
Logical: restrict the evidences to the queried datasets and resources. If set to
FALSE, the directions and effect signs and references might be based on other
datasets and resources.

wide Convert the annotation table to wide format, which corresponds more or less to
the original resource. If the data comes from more than one resource a list of
wide tables will be returned. See examples at pivot_annotations.

dorothea_levels
Vector detailing the confidence levels of the interactions to be downloaded. In
dorothea, every TF-target interaction has a confidence score ranging from A to
E, being A the most reliable interactions. By default here we take A, B and C
level interactions (c("A", "B", "C")). It is to note that E interactions are not
available in OmnipathR.

Value

A data frame (tibble) with the requested resource.

See Also

static_tables

Examples

static_table("annotations”, "PROGENy")

static_tables List the static tables available from OmniPath

Description

A few resources and datasets are available also as plain TSV files and can be accessed without TLS.
The purpose of these tables is to make the most often used OmniPath data available on computers
with configuration issues. These tables are not the recommended way to access OmniPath data, and
a warning is issued each time they are accessed.

Usage

static_tables()

stitch_actions 229

Value

A data frame listing the available tables.

See Also

static_table

Examples

static_tables()

stitch_actions Retrieve the STITCH actions dataset

Description

Retrieve the STITCH actions dataset

Usage
stitch_actions(organism = "human”, prefixes = FALSE)
Arguments
organism Character or integer: name or NCBI Taxonomy ID of an organism. STITCH
supports many organisms, please refer to their web site at https://stitch.
embl.de/.
prefixes Logical: include the prefixes in front of identifiers.
Value

Data frame of STITCH actions.

See Also

e stitch_actions
e stitch_links

e stitch_network

Examples

sta <- stitch_actions(organism = 'mouse')

https://stitch.embl.de/
https://stitch.embl.de/

230 stitch_network

stitch_links Retrieve the STITCH links dataset

Description

Retrieve the STITCH links dataset

Usage

stitch_links(organism = "human", prefixes = FALSE)

Arguments
organism Character or integer: name or NCBI Taxonomy ID of an organism. STITCH
supports many organisms, please refer to their web site at https://stitch.
embl.de/.
prefixes Logical: include the prefixes in front of identifiers.
Value

Data frame: organism specific STITCH links dataset.

See Also

e stitch_actions
e stitch_links

e stitch_network

Examples

stl <- stitch_links()

stitch_network Chemical-protein interactions from STITCH

Description

Chemical-protein interactions from STITCH

https://stitch.embl.de/
https://stitch.embl.de/

stitch_network

Usage

stitch_network(

231

organism = "human”,

min_score = 700L,

protein_ids = c("uniprot”, "genesymbol"),
metabolite_ids = c("hmdb"”, "kegg"),
cosmos = FALSE

Arguments

organism

min_score

protein_ids

metabolite_ids

cosmos

Value

Character or integer: name or NCBI Taxonomy ID of an organism. STITCH
supports many organisms, please refer to their web site at https://stitch.
embl.de/.

Confidence cutoff used for STITCH connections (700 by default).

Character: translate the protein identifiers to these ID types. Each ID type results
two extra columns in the output, for the "a" and "b" sides of the interaction,
respectively. The default ID type for proteins is Esembl Protein ID, and by
default UniProt IDs and Gene Symbols are included.

Character: translate the protein identifiers to these ID types. Each ID type results
two extra columns in the output, for the "a" and "b" sides of the interaction,
respectively. The default ID type for metabolites is PubChem CID, and HMDB
IDs and KEGG IDs are included.

Logical: use COSMOS format?

A data frame of STITCH chemical-protein and protein-chemical interactions with their effect signs,
and optionally with identifiers translated.

See Also

e stitch_actions

e stitch_links

e stitch_remove_prefixes

Examples

stn <- stitch_network(protein_ids = 'genesymbol', metabolite_ids = 'hmdb')

https://stitch.embl.de/
https://stitch.embl.de/

232 stitch_remove_prefixes

stitch_remove_prefixes
Remove the prefixes from STITCH identifiers

Description

STITCH adds the NCBI Taxonomy ID as a prefix to Ensembl protein identifiers, e.g. "9606.ENSP00000170630",
and "CID" followed by "s" or "m" (stereospecific or merged, respectively) in front of PubChem

Compound Identifiers. It also pads the CID with zeros. This function removes these prefixes,

leaving only the identifiers.

Usage
stitch_remove_prefixes(d, ..., remove = TRUE)
Arguments
d Data frame, typically the output of stitch_links or stitch_actions.
Names of columns to remove prefixes from. NSE is supported.
remove Logical: remove the prefixes? If FALSE, this function does nothing.
Value

Data frame with prefixes removed in the specified columns.

See Also
e stitch_actions
e stitch_links

e stitch_network

Examples

stitch_remove_prefixes(
data.frame(a = c('9606.ENSPQ0Q0Q170630", 'CIDs00012345')),
a

subnetwork 233

subnetwork Extract a custom subnetwork from a large network

Description

Extract a custom subnetwork from a large network

Usage
subnetwork(
network,
nodes = NULL,
order = 1L,
mode = "all”,
mindist = oL,
return_df = TRUE
)
Arguments
network Either an OmniPath interaction data frame, or an igraph graph object.
nodes Character or integer vector: names, identifiers or indices of the nodes to build
the subnetwork around.
order Integer: order of neighbourhood around nodes; i.e., number of steps starting
from the provided nodes.
mode Character: "all", "out" or "in". Follow directed edges from the provided nodes
in any, outbound or inbound direction, respectively.
mindist Integer: The minimum distance to include the vertex in the result.
return_df Logical: return an interaction data frame instead of an igraph object.
Value

A network data frame or an igraph object, depending on the “return_df** parameter.

See Also
* interaction_graph
e graph_interaction

¢ show_network

234 swap_relations

swap_relations Reverse the direction of ontology relations

Description

Reverse the direction of ontology relations

Usage

swap_relations(relations)

Arguments
relations The ‘relations‘ component of the data returned by obo_parser or any °...ontol-
ogy_download® function such as go_ontology_download. Depending on the
tables argument of those functions the ‘relations can be a data frame or a
nested list.
Value

Same type as the input, but the relations swapped: if in the input these pointed from each child to
the parents, in the output they point from each parent to their children, and vice versa.

See Also

e relations_list_to_table
e relations_table_to_list

e obo_parser

Examples

goslim_url <-
"http://current.geneontology.org/ontology/subsets/goslim_generic.obo"

path <- tempfile()

curl::curl_fetch_disk(goslim_url, path)

obo <- obo_parser(path)

unlink(path)

rel_swapped <- swap_relations(obo$relations)

swissprots_only

235

swissprots_only Retain only SwissProt IDs

Description

Retain only SwissProt IDs

Usage

swissprots_only(uniprots, organism = 9606)

Arguments

uniprots Character vector of UniProt IDs.

organism Character or integer: name or identifier of the organism.
Value

Character vector with only SwissProt IDs.

Examples

swissprots_only(c(”Q@5BL1", "A@A654IBU3", "P0@533"))

[1] "P0@533”

tfcensus_download Downloads the list of transcription factors from TF census

Description

Vaquerizas et al. published in 2009 a list of transcription factors. This function retrieves Supple-
mentary Table 2 from the article (http://www.nature.com/nrg/journal/v1@0/n4/index.html).

Usage

tfcensus_download()

Value

A data frame (tibble) listing transcription factors.

http://www.nature.com/nrg/journal/v10/n4/index.html

236 translate_ids

Examples

tfcensus <- tfcensus_download()

tfcensus

A tibble: 1,987 x 7

Class “Ensembl ID™ “IPI ID™ “Interpro DBD™ ~Interpro DNA-b.

<chr> <chr> <chr> <chr> <chr>

1 a ENSG0O000000. IPIQ021. NA IPR001289
2 a ENSG0000000. IPIQ004. IPROQQOQ47;IPR. NA

3 a ENSGQ000000. IPIQ001. IPROO1356;IPR. NA

4 a ENSG0O000000. IPI0029. IPR0O0Q910;IPR. NA

5 a ENSG0000000. IPIQ0Q1. IPROQ7087;IPR. IPRO06794

. with 1,977 more rows, and 2 more variables: “HGNC symbol~ <chr>,
“Tissue-specificity” <chr>

translate_ids Translate gene, protein and small molecule identifiers

Description

Translates a vector of identifiers, resulting a new vector, or a column of identifiers in a data frame
by creating another column with the target identifiers.

Usage

translate_ids(
d,

uploadlists = FALSE,
ensembl = FALSE,

hmdb = FALSE,

ramp = FALSE,

chalmers = FALSE,
entity_type = NULL,
keep_untranslated = TRUE,
return_df = FALSE,

organism = 9606,

reviewed = TRUE,

complexes = NULL,
complexes_one_to_many = NULL,
track = FALSE,
quantify_ambiguity = FALSE,
qualify_ambiguity = FALSE,
ambiguity_groups = NULL,
ambiguity_global FALSE,
ambiguity_summary = FALSE,
expand = TRUE

translate_ids 237

Arguments

d Character vector or data frame.

At least two arguments, with or without names. The first of these arguments
describes the source identifier, the rest of them describe the target identifier(s).
The values of all these arguments must be valid identifier types as shown in
Details. The names of the arguments are column names. In case of the first
(source) ID the column must exist. For the rest of the IDs new columns will
be created with the desired names. For ID types provided as arguments without
names, the name of the ID type will be used for column name.

uploadlists Force using the uploadlists service from UniProt. By default the plain query
interface is used (implemented in uniprot_full_id_mapping_table in this
package). If any of the provided ID types is only available in the uploadlists
service, it will be automatically selected. The plain query interface is preferred
because in the long term, with caching, it requires less download and data stor-
age.

ensembl Logical: use data from Ensembl BioMart instead of UniProt.

hmdb Logical: use HMDB ID translation data.

ramp Logical: use RaMP ID translation data.

chalmers Logical: use ID translation data from Chalmers Sysbio GEM.

entity_type Character: "gene" and "smol" are short symbols for proteins, genes and small
molecules respectively. Several other synonyms are also accepted.

keep_untranslated

In case the output is a data frame, keep the records where the source identifier
could not be translated. At these records the target identifier will be NA.

return_df Return a data frame even if the input is a vector.

organism Character or integer, name or NCBI Taxonomy ID of the organism (by default
9606 for human). Matters only if uploadlists is FALSE.

reviewed Translate only reviewed (TRUE), only unreviewed (FALSE) or both (NULL) UniProt

records. Matters only if uploadlists is FALSE.

complexes Logical: translate complexes by their members. Only complexes where all
members can be translated will be included in the result. If NULL, the option
omnipathr.complex_translation will be used.

complexes_one_to_many
Logical: allow combinatorial expansion or use only the first target identifier for
each member of each complex. If NULL, the option omnipathr.complex_translation_one_to_many
will be used.

track Logical: Track the records (rows) in the input data frame by adding a column
record_id with the original row numbers.

quantify_ambiguity
Logical or character: inspect the mappings for each ID for ambiguity. If TRUE,
for each translated column, two new columns will be created with numeric val-
ues, representing the ambiguity of the mapping on the "from" and "to" side of
the translation, respectively. If a character value provided, it will be used as a
column name suffix for the new columns.

238 translate_ids

qualify_ambiguity
Logical or character: inspect the mappings for each ID for ambiguity. If TRUE,
for each translated column, a new column will be inculded with values one-to-one,
one-to-many, many-to-one or many-to-many. If a character value provided, it
will be used as a column name suffix for the new column.

ambiguity_groups
Character vector: additional column names to group by during inspecting ambi-
guity. By default, the identifier columns (from and to) will be used to determine
the ambiguity of mappings.

ambiguity_global
Logical or character: if ambiguity_groups are provided, analyse ambiguity
also globally, across the whole data frame. Character value provides a custom
suffix for the columns quantifying and qualifying global ambiguity.

ambiguity_summary
Logical: generate a summary about the ambiguity of the translation and make it
available as an attribute. columns will be lists of character vectors.

expand Logical: if TRUE, ambiguous (to-many) mappings will be expanded to multiple
rows, resulting character type columns; if FALSE, the original rows will be kept
intact, and the target
Details

This function, depending on the uploadlists parameter, uses either the uploadlists service of
UniProt or plain UniProt queries to obtain identifier translation tables. The possible values for from
and to are the identifier type abbreviations used in the UniProt API, please refer to the table here:
https://www.uniprot.org/help/api_idmapping. In addition, simple synonyms are available
which realize a uniform API for the uploadlists and UniProt query based backends. These are the

followings:
OmnipathR Uploadlists UniProt query Ensembl BioMart
uniprot ACC id uniprotswissprot
uniprot_entry ID entry name
trembl reviewed = FALSE reviewed = FALSE uniprotsptrembl
genesymbol GENENAME genes(PREFERRED) external_gene_name
genesymbol_syn genes(ALTERNATIVE) external_synonym
hgnc HGNC_ID database(HGNC) hgnc_symbol
entrez P_ENTREZGENEID database(GenelD)
ensembl ENSEMBL _ID ensembl_gene_id
ensg ENSEMBL_ID ensembl_gene_id
enst ENSEMBL_TRS_ID database(Ensembl) ensembl_transcript_id
ensp ENSEMBL_PRO_ID ensembl_peptide_id
ensgg ENSEMBLGENOME_ID
ensgt ENSEMBLGENOME_TRS_ID
ensgp ENSEMBLGENOME_PRO_ID
protein_name protein names
pir PIR database(PIR)
ccds database(CCDS)
refseqp P_REFSEQ_AC database(refseq)

https://www.uniprot.org/help/api_idmapping

translate_ids 239

ipro interpro

ipro_desc interpro_description
ipro_sdesc interpro_short_description
wikigene wikigene_name
rnacentral rnacentral
gene_desc description
wormbase database(WormBase)

flybase database(FlyBase)

xenbase database(Xenbase)

zfin database(ZFIN)

pbd PBD_ID database(PDB) pbd

For a complete list of ID types and their synonyms, including metabolite and chemical ID types
which are not shown here, see id_types.

The mapping between identifiers can be ambiguous. In this case one row in the original data frame
yields multiple rows or elements in the returned data frame or vector(s).

The columns in the translation must be character type. Some ID types are numeric, such as the ones
from NCBI, these are sometimes present in data frames as double or integer type. This function
will convert those columns to character.

Value

* Data frame: if the input is a data frame or the input is a vector and return_df is TRUE.
* Vector: if the input is a vector, there is only one target ID type and return_df is FALSE.

* List of vectors: if the input is a vector, there are more than one target ID types and return_df
is FALSE. The names of the list will be ID types (as they were column names, see the descrip-
tion of the ... argument), and the list will also include the source IDs.

See Also

* translate_ids_multi

* uniprot_id_mapping_table

e uniprot_full_id_mapping_table
e ensembl_id_mapping_table

* hmdb_id_mapping_table

e id_types

* ensembl_id_type

* uniprot_id_type

e uploadlists_id_type

e hmdb_id_type

e chalmers_gem_id_type

240 translate_ids_multi

Examples

d <- data.frame(
uniprot_id = c(
'PO0533', 'Q9ULV1', 'P43897', 'Q9Y2P5',
'PO1258', 'P06881', 'P42771', 'Q8N726'

)

)

d <- translate_ids(d, uniprot_id = uniprot, genesymbol)
d

uniprot_id genesymbol

#1 P@0@533 EGFR

2 Q9uULV1 FZD4

3 P43897 TSFM

4 Q9Y2P5 SLC27A5

translate_ids_multi Translate gene, protein and small molecule identifiers from multiple
columns
Description

Especially when translating network interactions, where two ID columns exist (source and target),
it is convenient to call the same ID translation on multiple columns. The translate_ids function
is already able to translate to multiple ID types in one call, but is able to work only from one source
column. Here too, multiple target IDs are supported. The source columns can be listed explicitely,
or they might share a common stem, in this case the first element of . .. will be used as stem, and
the column names will be created by adding the suffixes. The suffixes are also used to name
the target columns. If no suffixes are provided, the name of the source columns will be added to
the name of the target columns. ID types can be defined the same way as for translate_ids. The
only limitation is that, if the source columns are provided as stem+suffixes, they must be the same
ID type.

Usage

translate_ids_multi(
d,
suffixes = NULL,
suffix_sep = "_",
uploadlists = FALSE,
ensembl = FALSE,
hmdb = FALSE,
chalmers = FALSE,
entity_type = NULL,
keep_untranslated = TRUE,
organism = 9606,
reviewed = TRUE

translate_ids_multi

Arguments

d

suffixes
suffix_sep

uploadlists

ensembl
hmdb
chalmers

entity_type

241

A data frame.

At least two arguments, with or without names. These arguments describe iden-
tifier columns, either the ones we translate from (source), or the ones we trans-
late to (target). Columns existing in the data frame will be used as source
columns. All the rest will be considered target columns. Alternatively, the
source columns can be defined as a stem and a vector of suffixes, plus a sep-
arator between the stem and suffix. In this case, the source columns will be the
ones that exist in the data frame with the suffixes added. The values of all these
arguments must be valid identifier types as shown at translate_ids. If ID type
is provided only for the first source column, the rest of the source columns will
be assumed to have the same ID type. For the target identifiers new columns
will be created with the desired names, with the suffixes added. If no suffixes
provided, the names of the source columns will be used instead.

Column name suffixes in case the names should be composed of stem and suffix.
Character: separator between the stem and suffixes.

Force using the ‘uploadlists® service from UniProt. By default the plain query
interface is used (implemented in uniprot_full_id_mapping_table in this
package). If any of the provided ID types is only available in the uploadlists
service, it will be automatically selected. The plain query interface is preferred
because in the long term, with caching, it requires less download and data stor-
age.

Logical: use data from Ensembl BioMart instead of UniProt.
Logical: use HMDB ID translation data.
Logical: use ID translation data from Chalmers Sysbio GEM.

Character: "gene" and "smol" are short symbols for proteins, genes and small
molecules respectively. Several other synonyms are also accepted.

keep_untranslated

organism

reviewed

Value

In case the output is a data frame, keep the records where the source identifier
could not be translated. At these records the target identifier will be NA.

Character or integer, name or NCBI Taxonomy ID of the organism (by default
9606 for human). Matters only if uploadlists is FALSE.

Translate only reviewed (TRUE), only unreviewed (FALSE) or both (NULL) UniProt
records. Matters only if uploadlists is FALSE.

A data frame with all source columns translated to all target identifiers. The number of new columns
is the product of source and target columns. The target columns are distinguished by the suffexes
added to their names.

See Also

translate_ids

242

Examples

ia <- omnipath()
translate_ids_multi(ia, source = uniprot, target, ensp, ensembl = TRUE)

trrust_download

trembls_only Retain only TrEMBL IDs

Description

Retain only TrEMBL IDs

Usage

trembls_only(uniprots, organism = 9606)

Arguments

uniprots Character vector of UniProt IDs.

organism Character or integer: name or identifier of the organism.
Value

Character vector with only TrEMBL IDs.

Examples

trembls_only(c("Q@5BL1", "A@A654IBU3", "P00533"))
[1] "QO5BL1" "AOA654IBU3"

trrust_download Downloads TF-target interactions from TRRUST

Description

TRRUST v2 (https://www.grnpedia.org/trrust/) is a database of literature mined TF-target

interactions for human and mouse.

Usage

trrust_download(organism = "human")

Arguments

organism Character: either "human" or "mouse".

https://www.grnpedia.org/trrust/

uniprot_full_id_mapping_table 243

Value

A data frame of TF-target interactions.

Examples

trrust_interactions <- trrust_download()
trrust_interactions
A tibble: 11,698 x 4

source_genesymbol target_genesymbol effect reference
<chr> <chr> <dbl> <chr>

1 AATF BAX -1 22909821

2 AATF CDKN1A @ 17157788

3 AATF KLK3 @ 23146908

4 AATF MYC 1 20549547

5 AATF TP53 @ 17157788

6 ABL1 BAX 1 11753601

7 ABL1 BCL2 -1 11753601

. with 11,688 more rows

uniprot_full_id_mapping_table
Creates an ID translation table from UniProt data

Description

Creates an ID translation table from UniProt data

Usage
uniprot_full_id_mapping_table(
to,
from = "accession”,

reviewed = TRUE,
organism = 9606

)
Arguments
to Character or symbol: target ID type. See Details for possible values.
from Character or symbol: source ID type. See Details for possible values.
reviewed Translate only reviewed (TRUE), only unreviewed (FALSE) or both (NULL) UniProt

records.

organism Integer, NCBI Taxonomy ID of the organism (by default 9606 for human).

244 uniprot_genesymbol_cleanup

Details

For both source and target ID type, this function accepts column codes used by UniProt and some
simple shortcuts defined here. For the UniProt codes please refer to https://www.uniprot.org/help/uniprotkb
The shortcuts are entrez, genesymbol, genesymbol_syn (synonym gene symbols), hgnc, embl, ref-

seqp (RefSeq protein), enst (Ensembl transcript), uniprot_entry (UniProtKB AC, e.g. EGFR_HUMAN),
protein_name (full name of the protein), uniprot (UniProtKB ID, e.g. P00533). For a complete table

please refer to translate_ids.

Value

A data frame (tibble) with columns ‘From* and ‘To‘, UniProt IDs and the corresponding foreign
IDs, respectively.

See Also

e translate_ids
e ensembl_id_mapping_table

e uniprot_id_mapping_table

Examples

uniprot_entrez <- uniprot_full_id_mapping_table(to = 'entrez')
uniprot_entrez

A tibble: 20,723 x 2

From To

<chr> <chr>
1 Q96R72 NA

2 Q9UKL2 23538

3 Q9H205 144125

4 Q8NGN2 219873

5 Q8NGC1 390439

. with 20,713 more rows

uniprot_genesymbol_cleanup
TrEMBL to SwissProt by gene names

Description

TrEMBL to SwissProt by gene names

Usage

uniprot_genesymbol_cleanup(uniprots, organism = 9606, only_trembls = TRUE)

uniprot_idmapping_id_types 245

Arguments
uniprots Character vector possibly containing TrEMBL IDs.
organism Character or integer: organism name or identifier.

only_trembls Attempt to convert only known TrEMBL IDs of the organism. This is the rec-
ommended practice.

Details

Sometimes one gene or protein is represented by multiple identifiers in UniProt. These are typically
slightly different isoforms, some of them having TrEMBL IDs, some of the SwissProt. For the
purposes of most systems biology application, the most important is to identify the protein or gene
in a way that we can recognize it in other datasets. Unfortunately UniProt or Ensembl do not seem
to offer solution for this issue. Hence, if we find that a TTEMBL ID has a gene name which is also
associated with a SwissProt ID, we replace this TTEMBL ID by that SwissProt. There might be a
minor difference in their sequence, but most of the omics analyses do not even consider isoforms.
And it is quite possible that later UniProt will convert the TTEMBL record to an isoform within the
SwissProt record. Typically this translation is not so important (but still beneficial) for human, but
for other organisms it is critical especially when translating from foreign identifiers.

This function accepts a mixed input of UniProt IDs and provides a distinct translation table that you
can use to translate your data.

Value

Data frame with two columns: "input" and "output". The first one contains all identifiers from the
input vector ‘uniprots‘. The second one has the corresponding identifiers which are either SwissProt
IDs with gene names identical to the TrEMBL IDs in the input, or if no such records are available,
the output has the input items unchanged.

Examples

Not run:

uniprot_genesymbol_cleanup('Q6PB82', organism = 10090)
A tibble: 1 x 2

input output

<chr> <chr>

1 Q6PB82 070405

End(Not run)

uniprot_idmapping_id_types
ID types available in the UniProt ID Mapping service

Description

ID types available in the UniProt ID Mapping service

246 uniprot_id_mapping_table

Usage

uniprot_idmapping_id_types()

Value

A data frame listing the ID types.

Examples

uniprot_idmapping_id_types()

uniprot_id_mapping_table
ID translation data from UniProt ID Mapping

Description

Retrieves an identifier translation table from the UniProt ID Mapping service (https://www.uniprot.org/help/id_mapping).

Usage

uniprot_id_mapping_table(identifiers, from, to, chunk_size = NULL)

Arguments
identifiers Character vector of identifiers
from Character or symbol: type of the identifiers provided. See Details for possible
values.
to Character or symbol: identifier type to be retrieved from UniProt. See Details
for possible values.
chunk_size Integer: query the identifiers in chunks of this size. If you are experiencing
download failures, try lower values.
Details

This function uses the uploadlists service of UniProt to obtain identifier translation tables. The
possible values for ‘from* and ‘to* are the identifier type abbreviations used in the UniProt API,
please refer to the table here: uniprot_idmapping_id_types or the table of synonyms supported
by the current package: translate_ids. Note: if the number of identifiers is larger than the chunk
size the log message about the cache origin is not guaranteed to be correct (most of the times it is
still correct).

Value

A data frame (tibble) with columns ‘From* and ‘To‘, the identifiers provided and the corresponding
target IDs, respectively.

uniprot_id_type 247

See Also

translate_ids

Examples

uniprot_genesymbol <- uniprot_id_mapping_table(
c('P@@533', 'P23771'), uniprot, genesymbol

)

uniprot_genesymbol

A tibble: 2 x 2

From To

<chr> <chr>

1 P00533 EGFR

2 P23771 GATA3

uniprot_id_type UniProt identifier type label

Description

UniProt identifier type label

Usage

uniprot_id_type(label)

Arguments

label Character: an ID type label, as shown in the table at translate_ids

Value

Character: the UniProt specific ID type label, or the input unchanged if it could not be translated
(still might be a valid identifier name). This is the label that one can use in UniProt REST queries.

See Also

e ensembl_id_type
e uploadlists_id_type

Examples

ensembl_id_type("entrez")
[1] "database(GeneID)"

248 unique_intercell_network

unique_intercell_network
Unique intercellular interactions

Description

In the intercellular network data frames produced by intercell_network, by default each pair of
annotations for an interaction is represented in a separate row. This function drops the annotations
and keeps only the distinct interacting pairs.

Usage
unique_intercell_network(network, ...)
Arguments
network An intercellular network data frame as produced by intercell_network.
Additional columns to keep. Note: if these have multiple values for an interact-
ing pair, only the first row will be preserved.
Value

A data frame with interacting pairs and interaction attributes.

See Also

* intercell_network

e simplify_intercell_network

e filter_intercell_network

e intercell

e intercell_categories

* intercell_generic_categories

e intercell_summary

Examples

icn <- intercell_network()
icn_unique <- unique_intercell_network(icn)

unnest_evidences 249

unnest_evidences Separate evidences by direction and effect sign

Description

Separate evidences by direction and effect sign

Usage

unnest_evidences(data, longer = FALSE, .keep = FALSE)

Arguments

data An interaction data frame with "evidences" column.

longer Logical: If TRUE, the "evidences" column is split into rows.

.keep Logical: keep the "evidences" column. When unnesting to longer data frame,
the "evidences" column will contain the unnested evidences, while the original
column will be retained under the "all_evidences" name (if ‘.keep = TRUE®).

Value

The data frame with new columns or new rows by direction and sign.

See Also

e only_from
e filter_evidences

e from_evidences

Examples

Not run:

op <- omnipath_interactions(fields = "evidences")
op <- unnest_evidences(op)

colnames(op)

End(Not run)

250 vinayagam_download

uploadlists_id_type UniProt Uploadlists identifier type label

Description

UniProt Uploadlists identifier type label

Usage
uploadlists_id_type(label, side = "from")

Arguments
label Character: an ID type label, as shown in the table at translate_ids
side Character: either "from" or "to": direction of the mapping.

Value

Character: the UniProt Uploadlists specific ID type label, or the input unchanged if it could not
be translated (still might be a valid identifier name). This is the label that one can use in UniProt
Uploadlists (ID Mapping) queries.

See Also
* ensembl_id_type
e uniprot_id_type
e hmdb_id_type

e chalmers_gem_id_type

Examples

ensembl_id_type("entrez")
[1] "GeneID"

vinayagam_download Protein-protein interactions from Vinayagam 2011

Description
Retrieves the Supplementary Table S6 from Vinayagam et al. 2011. Find out more at https:
//doi.org/10.1126/scisignal.2001699.

Usage

vinayagam_download()

https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1126/scisignal.2001699

walk_ontology_tree 251

Value

A data frame (tibble) with interactions.

Examples

vinayagam_interactions <- vinayagam_download()
vinayagam_interactions
A tibble: 34,814 x 5

“Input-node Gen. "~ Input-node Gen. ~Output-node Ge. ~Output-node Ge.
<chr> <dbl> <chr> <dbl>
1 Clorf1e3 55791 MNAT1 4331
2 MAST2 23139 DYNLL1 8655
3 RAB22A 57403 APPL2 55198
4 TRAP1 10131 EXT2 2132
5 STAT2 6773 COPS4 51138

. with 34,804 more rows, and 1 more variable:
“Edge direction score” <dbl>

walk_ontology_tree All nodes of a subtree starting from the selected nodes

Description

Starting from the selected nodes, recursively walks the ontology tree until it reaches either the root
or leaf nodes. Collects all visited nodes.

Usage

walk_ontology_tree(
terms,
ancestors = TRUE,
db_key = "go_basic”,
ids = TRUE,
method = "gra",
relations = c("is_a", "part_of", "occurs_in", "regulates”, "positively_regulates”,
"negatively_regulates”)

)
Arguments

terms Character vector of ontology term IDs or names. A mixture of IDs and names
can be provided.

ancestors Logical: if FALSE the ontology tree is traversed towards the leaf nodes; if TRUE,
the tree is traversed until the root. The former returns the ancestors (parents),
the latter the descendants (children).

db_key Character: key to identify the ontology database. For the available keys see

omnipath_show_db.

252 with_extra_attrs

ids Logical: whether to return IDs or term names.

method Character: either "gra" or "Ist". The implementation to use for traversing the
ontology tree. The graph based implementation is faster than the list based, the
latter will be removed in the future.

relations Character vector of ontology relation types. Only these relations will be used.

Details

Note: this function relies on the database manager, the first call might take long because of the
database load process. Subsequent calls within a short period should be faster. See get_ontology_db.

Value

Character vector of ontology IDs. If the input terms are all leaves or roots NULL is returned. The
starting nodes won’t be included in the result unless they fall onto the traversal path from other
nodes.

See Also

e omnipath_show_db

* get_ontology_db

Examples

walk_ontology_tree(c('G0:0006241"', 'G0:0044211'))
[1] "GO:0006139" "GO:0006220" "GO:0006221" "GO:0006241" "GO:0006725"
[6] "GO:0006753" "G0:0006793" "G0:0006796" "GO:0006807" "GO:0008150"
... (truncated)
walk_ontology_tree(c('G0:0006241', 'G0:0044211'), ancestors = FALSE)
[1] "GO:0044210" "G0O:0044211"
walk_ontology_tree(
c('G0:0006241', 'GO:0044211"'),
ancestors = FALSE,
ids = FALSE
)
[1] "'de novo' CTP biosynthetic process” "CTP salvage”

with_extra_attrs Interaction records having certain extra attributes

Description

Interaction records having certain extra attributes

Usage

with_extra_attrs(data, ...)

with_references 253

Arguments
data An interaction data frame.
The name(s) of the extra attributes; NSE is supported.
Value

The data frame filtered to the records having the extra attribute.

See Also

e extra_attrs
* has_extra_attrs

extra_attrs_to_cols

filter_extra_attrs

extra_attr_values

Examples

i <- omnipath(fields = "extra_attrs")
with_extra_attrs(i, Macrophage_type)

with_references Interactions having references

Description

Interactions having references

Usage

with_references(data, resources = NULL)

Arguments
data An interaction data frame.
resources Character: consider only these resources. If ‘NULL*, records with any reference
will be accepted.
Value

A subset of the input interaction data frame.

Examples

cc <- import_post_translational_interactions(resources = 'CellChatDB')
with_references(cc, 'CellChatDB')

254 zenodo_download

zenodo_download Retrieves data from Zenodo

Description

Zenodo is a repository of large scientific datasets. Many projects and publications make their
datasets available at Zenodo. This function downloads an archive from Zenodo and extracts the
requested file.

Usage

zenodo_download(
path,
reader = NULL,
reader_param = list(),
url_key = NULL,
zenodo_record = NULL,
zenodo_fname = NULL,
url_param = list(),
url_key_param = list(),

)

Arguments
path Character: path to the file within the archive.
reader Optional, a function to read the connection.

reader_param List: arguments for the reader function.

url_key Character: name of the option containing the URL

zenodo_record The Zenodo record ID, either integer or character.

zenodo_fname The file name within the record.

url_param List: variables to insert into the URL string (which is returned from the options).
url_key_param List: variables to insert into the ‘url_key".

Passed to archive_extractor

Value

A connection

Examples

an example from the OmnipathR::remap_tf_target_download function:
remap_dorothea <- zenodo_download(

zenodo_record = 3713238,

zenodo_fname = 'tf_target_sources.zip',

zenodo_download 255

path = (
'tf_target_sources/chip_seq/remap/gene_tf_pairs_genesymbol.txt'
),
reader = read_tsv,
reader_param = list(
col_names = c(
'source_genesymbol',
'target_genesymbol',
'target_ensembl’,
"score’
),
col_types = cols(),
progress = FALSE
),
resource = 'ReMap’

)

Index

+ datasets
.omnipathr_options_defaults, 8
.omnipathr_options_defaults, 8

all_interactions, 89, 165
all_interactions
(omnipath-interactions), 159
all_uniprot_acs, 9
all_uniprots, 8
ambiguity, 10
ancestors, 11
annotated_network, 12, 15, 39, 164
annotation_categories, 15
annotation_resources, 12, 15, 16
annotations, 12, 13, 16, 201

biomart_query, 17
bioplex1, 18, 19-21
bioplex2, 18, 19, 20, 21
bioplex3, 18, 19,19, 21
bioplex_all, 18-20, 20, 21
bioplex_hct116_1, 18-21, 21
bma_motif_es, 22
bma_motif_vs, 23

chalmers_gem, 23, 27-30
chalmers_gem_id_mapping_table, 24, 25,
27-30,44, 76, 85,212
chalmers_gem_id_type, 25, 45, 76, 85, 212,
239, 250
chalmers_gem_metabolites, 24, 26, 28, 30
chalmers_gem_network, 24, 27,27, 29, 30, 37
chalmers_gem_raw, 24, 27, 28, 28, 30
chalmers_gem_reactions, 24, 27-29, 29
collectri, 89
collectri (omnipath-interactions), 159
common_name, 30, 45, 118, 122, 155
complex_genes, 33
complex_resources, 32, 34
complexes, 31, 33, 34

256

config_path (omnipath_config_path), 182
consensuspathdb_download, 34, 147
consensuspathdb_raw_table, 35
cosmos_pkn, 24, 27-30, 36, 184
curated_ligand_receptor_interactions,
38, 40
curated_ligrec_stats, 39, 40

database_summary, 41
datasets_one_column, 41
descendants, 42

dorothea, 89

dorothea (omnipath-interactions), 159

ensembl_dataset, 43
ensembl_id_mapping_table, 43, 76, 85, 212,
239, 244
ensembl_id_type, 26, 44, 76, 85, 212, 239,
247,250
ensembl_name, 31,45, 118, 122, 155
ensembl_organisms, 46, 156
ensembl_organisms_raw, 46
ensembl_orthology, 47
ensure_igraph, 48
enzsub_graph, 49, 52, 64
enzsub_resources, 49, 51
enzyme_substrate, 49, 50, 50, 88, 226
evex_download, 52, 126, 148
evidences, 53
extra_attr_values, 55, 56, 59, 75, 253
extra_attrs, 54, 55, 56, 59, 75, 253
extra_attrs_to_cols, 55, 55, 56, 59, 75, 253

filter_by_resource, 57
filter_evidences, 57, 66, 196, 249
filter_extra_attrs, 55, 56, 58, 75, 253
filter_intercell, 59, 93, 95, 99
filter_intercell_network, 38, 39, 61, 97,
98, 136, 137, 140, 142, 227, 248
find_all_paths, 49, 64, 88

INDEX

from_evidences, 58, 65, 196, 249

get_annotation_resources
(annotation_resources), 16
get_complex_genes (complex_genes), 33
get_complex_resources
(complex_resources), 34
get_db, 66, 68, 71, 119
get_enzsub_resources
(enzsub_resources), 49
get_interaction_resources
(interaction_resources), 89
get_intercell_categories, 9/
get_intercell_categories
(intercell_categories), 93
get_intercell_generic_categories
(intercell_generic_categories),
95
get_intercell_resources
(intercell_resources), 99
get_ontology_db, 11,42, 67,252
get_resources (resources), 223
get_signed_ptms (signed_ptms), 226
giant_component, 49, 64, 68, 88
go_annot_download, 69, 71
go_annot_slim, 69, 70
go_ontology_download, 71,71, 234
graph_interaction, 72, 88, 233
guide2pharma_download, 73, 137

harmonizome_download, 74, 126
has_extra_attrs, 55, 56, 59, 74, 253
hmdb_id_mapping_table, 44, 75, 85, 239
hmdb_id_type, 26, 45, 76, 85, 239, 250
hmdb_metabolite_fields, 77,77, 78
hmdb_protein_fields, 77,77, 78
hmdb_table, 76, 77,78, 212
homologene_download, 79, 81
homologene_organisms, 80
homologene_raw, 79, 81
homologene_uniprot_orthology, 79, 82
hpo_download, 83
htridb_download, 83, 127

id_translation_resources, 84
id_types, 75, 76, 85, 211, 212, 239
import_all_interactions, 88
import_all_interactions
(omnipath-interactions), 159

257

import_dorothea_interactions, 88
import_dorothea_interactions
(omnipath-interactions), 159
import_intercell_network, 12, 38, 39, 137
import_intercell_network
(intercell_network), 96
import_kinaseextra_interactions, 88
import_kinaseextra_interactions
(omnipath-interactions), 159
import_ligrecextra_interactions, 39, 88
import_ligrecextra_interactions
(omnipath-interactions), 159
import_lncrna_mrna_interactions
(omnipath-interactions), 159
import_mirnatarget_interactions, 88
import_mirnatarget_interactions
(omnipath-interactions), 159
import_omnipath_annotations
(annotations), 13
import_omnipath_complexes (complexes),
31
import_omnipath_enzsub
(enzyme_substrate), 50
import_omnipath_interactions, 88
import_omnipath_interactions
(omnipath-interactions), 159
import_omnipath_intercell (intercell),
90
import_pathwayextra_interactions, 88
import_pathwayextra_interactions
(omnipath-interactions), 159
import_post_translational_interactions
39, 150
import_post_translational_interactions
(omnipath-interactions), 159

import_small_molecule_protein_interactions

(omnipath-interactions), 159
import_tf_mirna_interactions
(omnipath-interactions), 159
import_tf_target_interactions
(omnipath-interactions), 159
import_transcriptional_interactions,
127
import_transcriptional_interactions
(omnipath-interactions), 159
inbiomap_download, 86, 87, 149
inbiomap_raw, 86, 87
interaction_datasets, 87

258

interaction_graph, 64, 72, 73, 88, 164, 165,
233

interaction_resources, 89, 164, 165

interaction_types, 90

intercell, 59-61, 63,90, 93-96, 98, 99, 227,
248

intercell_categories, 61, 63, 93, 93, 95,
98, 99, 227, 248

intercell_consensus_filter, 38, 93, 94

intercell_generic_categories, 61, 63, 93,
95,95, 98, 99, 227, 248

intercell_network, 61-63, 93, 95, 96, 99,
226, 227, 248

intercell_resources, 93, 95, 99

intercell_summary, 61, 63, 93, 95, 98, 99,
100, 227, 248

is_ontology_id, 100

is_swissprot, 101

is_trembl, 102

is_uniprot, 102

kegg_api_templates, 103, 116, 117

kegg_conv, 103

kegg_databases, 104

kegg_ddi, 104

kegg_find, 105

kegg_info, 106, 108, 113, 114

kegg_link, 106

kegg_list, 107

kegg_open, 106,107, 113, 114

kegg_operations, 108

kegg_organism_codes, 109

kegg_organisms, 109

kegg_pathway_annotations, 111

kegg_pathway_download, 7110, 112, 113,115

kegg_pathway_list, 106, 108, 110, 112, 113,
114, 115

kegg_pathways_download, 110, 111-113,
115

kegg_picture, 106, 108, 113, 114

kegg_process, 110, 112, 113, 115

kegg_query, 103-107, 116

kegg_request, 117

kegg_rm_prefix, 117

kinaseextra, 89, 98

kinaseextra (omnipath-interactions), 159

latin_name, 31,45, 118, 122, 155
ligrecextra, 89, 98

INDEX

ligrecextra (omnipath-interactions), 159
Incrna_mrna (omnipath-interactions), 159
load_config (omnipath_load_config), 184
load_db, 119

logfile (omnipath_logfile), 186

metalinksdb_sqlite, 120, 120, 121

metalinksdb_table, 120

metalinksdb_tables, /20, 121

mirna_target, 89

mirna_target (omnipath-interactions),
159

ncbi_taxid, 31,45, 118, 121, 155
nichenet_build_model, 122, 135
nichenet_expression_data, 123, 144
nichenet_gr_network, 123, 126, 127,
129-131, 140-143
nichenet_gr_network_evex, 124, 125, 128
nichenet_gr_network_harmonizome, 124,
126, 128
nichenet_gr_network_htridb, /24, 127,
128
nichenet_gr_network_omnipath, 124, 127,
128
nichenet_gr_network_pathwaycommons
124, 128, 128
nichenet_gr_network_regnetwork, 124,
128,129
nichenet_gr_network_remap, 124, 128, 130
nichenet_gr_network_trrust, 124, 128,
131
nichenet_ligand_activities, 131
nichenet_ligand_target_links, 133
nichenet_ligand_target_matrix, /32, 133,
134
nichenet_lr_network, 132, 135, 135, 137,
138, 140-144
nichenet_lr_network_guide2pharma, 136,
136
nichenet_lr_network_omnipath, 127, 136,
137,137,150
nichenet_lr_network_ramilowski, /36,
138
nichenet_main, 139, 152
nichenet_networks, 122, 141, 142, 144
nichenet_optimization, 122, 143
nichenet_remove_orphan_ligands, 144
nichenet_results_dir, 141, 145

INDEX

nichenet_signaling_network, /140-143,
145, 147-150
nichenet_signaling_network_cpdb, 146,
147
nichenet_signaling_network_evex, 146,
148
nichenet_signaling_network_harmonizome,
146, 148
nichenet_signaling_network_inbiomap,
146, 149
nichenet_signaling_network_omnipath,
146, 150
nichenet_signaling_network_pathwaycommons,
146, 151
nichenet_signaling_network_vinayagam,
146, 151
nichenet_test, 141, 152
nichenet_workarounds, /41, 153

obo_parser, 153, 216-218, 234
oma_code, 155
oma_organisms, 156
oma_pairwise, 156, 157, 158
oma_pairwise_genesymbols, 157, 157
oma_pairwise_translated, 158
omnipath, 89, 98
omnipath (omnipath-interactions), 159
omnipath-interactions, 159
omnipath_cache_autoclean, 167, 177
omnipath_cache_clean, 167, 168, 177
omnipath_cache_clean_db, 168
omnipath_cache_download_ready, 169
omnipath_cache_filter_versions, 170
omnipath_cache_get, 171, 173
omnipath_cache_key, 172
omnipath_cache_latest_or_new, 172
omnipath_cache_latest_version, 174
omnipath_cache_load, 174
omnipath_cache_move_in, 175, 178
omnipath_cache_remove, 167, 176, 182
omnipath_cache_save, 175, 176, 178
omnipath_cache_search, 179
omnipath_cache_set_ext, 180
omnipath_cache_update_status, 181
omnipath_cache_wipe, 177, 182
omnipath_config_path, 182, 222
omnipath_for_cosmos, 38, 183
omnipath_interactions, 12, 37, 51, 53, 96,
164, 184

259

omnipath_interactions
(omnipath-interactions), 159
omnipath_load_config, 184, 222
omnipath_log, 185, 186
omnipath_logfile, 186, 186
omnipath_msg, 187
omnipath_query, 13, 15, 31, 32, 50, 52, 92,

161,187, 190
omnipath_reset_config (reset_config),
222

omnipath_save_config, 190, 222
omnipath_set_cachedir, 14, 32, 51, 93, 163,
190, 191
omnipath_set_console_loglevel, 192, 193
omnipath_set_logfile_loglevel, 192, 192
omnipath_set_loglevel, 193
omnipath_show_db, 71,42, 67, 68, 119, 194,
196-198, 251, 252
omnipath_unlock_cache_db, 194
OmnipathR, 166
OmnipathR-package (OmnipathR), 166
only_from, 58, 66, 195, 249
ontology_ensure_id, 196
ontology_ensure_name, 197
ontology_name_id, 197
organism_for, 198
orthology_translate_column, 199

pathwaycommons_download, /29, 200
pathwayextra, 89, 98
pathwayextra (omnipath-interactions),
159
pivot_annotations, 13, 15,201, 228
post_translational, 89, 164
post_translational
(omnipath-interactions), 159
preppi_download, 202, 204
preppi_filter, 203,204
print_bma_motif_es, 205
print_bma_motif_vs, 206
print_interactions, 52, 164, 165, 206
print_path_es, 207, 208
print_path_vs, 208, 208
pubmed_open, 209

query_info, 15, 32, 52, 163, 190, 210

ramilowski_download, /38, 210
ramp_id_mapping_table, 211

260

ramp_id_type, 212
ramp_sqlite, 211,213,214
ramp_table, 271,213
ramp_tables, 211,213, 214,214
read_log (omnipath_log), 185
regnetwork_directions, 215, 215
regnetwork_download, 129, 215
relations_list_to_table, /154, 216, 218,
234
relations_table_to_graph, 217
relations_table_to_list, 154,217,218,
234
remap_dorothea_download, 219, 227
remap_filtered, 130, 220, 220, 221
remap_tf_target_download, 279, 220, 221
reset_config, 222
resource_info, 224
resources, 16, 34, 50, 89, 95, 99, 223
resources_colname, 223
resources_in, 224

save_config (omnipath_save_config), 190

set_loglevel (omnipath_set_loglevel),
193

show_network, 225, 233

signed_ptms, 226

simplify_intercell_network, 63, 98, 226,
248

small_molecule, 89

small_molecule (omnipath-interactions),
159

static_table, 227, 229

static_tables, 228, 228

stitch_actions, 229, 229, 230-232

stitch_links, 229, 230, 230, 231, 232

stitch_network, 38, 229, 230, 230, 232

stitch_remove_prefixes, 231,232

subnetwork, 233

swap_relations, 154, 217, 218, 234

swissprots_only, 235

tf_mirna, 89

tf_mirna (omnipath-interactions), 159

tf_target, 89

tf_target (omnipath-interactions), 159

tfcensus_download, 220, 235

transcriptional, 89

transcriptional
(omnipath-interactions), 159

INDEX

translate_ids, 25, 44, 76, 82, 85, 199, 211,
236, 240, 241, 244, 246, 247, 250
translate_ids_multi, 85, 239, 240
trembls_only, 242
trrust_download, /31, 242

uniprot_full_id_mapping_table, 44, 76,
85,212, 237,239, 241,243
uniprot_genesymbol_cleanup, 244
uniprot_id_mapping_table, 44, 76, 85, 212,
239, 244, 246
uniprot_id_type, 26, 45, 76, 85, 212, 239,
247, 250
uniprot_idmapping_id_types, 245, 246
unique_intercell_network, 63, 97, 98, 227,
248
unnest_evidences, 58, 66, 196, 249
uploadlists_id_type, 26, 45, 76, 212, 239,
247,250

vinayagam_download, 250

walk_ontology_tree, 251
with_extra_attrs, 55, 56, 59, 75, 252
with_references, 253

zenodo_download, 254

	.omnipathr_options_defaults
	all_uniprots
	all_uniprot_acs
	ambiguity
	ancestors
	annotated_network
	annotations
	annotation_categories
	annotation_resources
	biomart_query
	bioplex1
	bioplex2
	bioplex3
	bioplex_all
	bioplex_hct116_1
	bma_motif_es
	bma_motif_vs
	chalmers_gem
	chalmers_gem_id_mapping_table
	chalmers_gem_id_type
	chalmers_gem_metabolites
	chalmers_gem_network
	chalmers_gem_raw
	chalmers_gem_reactions
	common_name
	complexes
	complex_genes
	complex_resources
	consensuspathdb_download
	consensuspathdb_raw_table
	cosmos_pkn
	curated_ligand_receptor_interactions
	curated_ligrec_stats
	database_summary
	datasets_one_column
	descendants
	ensembl_dataset
	ensembl_id_mapping_table
	ensembl_id_type
	ensembl_name
	ensembl_organisms
	ensembl_organisms_raw
	ensembl_orthology
	ensure_igraph
	enzsub_graph
	enzsub_resources
	enzyme_substrate
	evex_download
	evidences
	extra_attrs
	extra_attrs_to_cols
	extra_attr_values
	filter_by_resource
	filter_evidences
	filter_extra_attrs
	filter_intercell
	filter_intercell_network
	find_all_paths
	from_evidences
	get_db
	get_ontology_db
	giant_component
	go_annot_download
	go_annot_slim
	go_ontology_download
	graph_interaction
	guide2pharma_download
	harmonizome_download
	has_extra_attrs
	hmdb_id_mapping_table
	hmdb_id_type
	hmdb_metabolite_fields
	hmdb_protein_fields
	hmdb_table
	homologene_download
	homologene_organisms
	homologene_raw
	homologene_uniprot_orthology
	hpo_download
	htridb_download
	id_translation_resources
	id_types
	inbiomap_download
	inbiomap_raw
	interaction_datasets
	interaction_graph
	interaction_resources
	interaction_types
	intercell
	intercell_categories
	intercell_consensus_filter
	intercell_generic_categories
	intercell_network
	intercell_resources
	intercell_summary
	is_ontology_id
	is_swissprot
	is_trembl
	is_uniprot
	kegg_api_templates
	kegg_conv
	kegg_databases
	kegg_ddi
	kegg_find
	kegg_info
	kegg_link
	kegg_list
	kegg_open
	kegg_operations
	kegg_organisms
	kegg_organism_codes
	kegg_pathways_download
	kegg_pathway_annotations
	kegg_pathway_download
	kegg_pathway_list
	kegg_picture
	kegg_process
	kegg_query
	kegg_request
	kegg_rm_prefix
	latin_name
	load_db
	metalinksdb_sqlite
	metalinksdb_table
	metalinksdb_tables
	ncbi_taxid
	nichenet_build_model
	nichenet_expression_data
	nichenet_gr_network
	nichenet_gr_network_evex
	nichenet_gr_network_harmonizome
	nichenet_gr_network_htridb
	nichenet_gr_network_omnipath
	nichenet_gr_network_pathwaycommons
	nichenet_gr_network_regnetwork
	nichenet_gr_network_remap
	nichenet_gr_network_trrust
	nichenet_ligand_activities
	nichenet_ligand_target_links
	nichenet_ligand_target_matrix
	nichenet_lr_network
	nichenet_lr_network_guide2pharma
	nichenet_lr_network_omnipath
	nichenet_lr_network_ramilowski
	nichenet_main
	nichenet_networks
	nichenet_optimization
	nichenet_remove_orphan_ligands
	nichenet_results_dir
	nichenet_signaling_network
	nichenet_signaling_network_cpdb
	nichenet_signaling_network_evex
	nichenet_signaling_network_harmonizome
	nichenet_signaling_network_inbiomap
	nichenet_signaling_network_omnipath
	nichenet_signaling_network_pathwaycommons
	nichenet_signaling_network_vinayagam
	nichenet_test
	nichenet_workarounds
	obo_parser
	oma_code
	oma_organisms
	oma_pairwise
	oma_pairwise_genesymbols
	oma_pairwise_translated
	omnipath-interactions
	OmnipathR
	omnipath_cache_autoclean
	omnipath_cache_clean
	omnipath_cache_clean_db
	omnipath_cache_download_ready
	omnipath_cache_filter_versions
	omnipath_cache_get
	omnipath_cache_key
	omnipath_cache_latest_or_new
	omnipath_cache_latest_version
	omnipath_cache_load
	omnipath_cache_move_in
	omnipath_cache_remove
	omnipath_cache_save
	omnipath_cache_search
	omnipath_cache_set_ext
	omnipath_cache_update_status
	omnipath_cache_wipe
	omnipath_config_path
	omnipath_for_cosmos
	omnipath_load_config
	omnipath_log
	omnipath_logfile
	omnipath_msg
	omnipath_query
	omnipath_save_config
	omnipath_set_cachedir
	omnipath_set_console_loglevel
	omnipath_set_logfile_loglevel
	omnipath_set_loglevel
	omnipath_show_db
	omnipath_unlock_cache_db
	only_from
	ontology_ensure_id
	ontology_ensure_name
	ontology_name_id
	organism_for
	orthology_translate_column
	pathwaycommons_download
	pivot_annotations
	preppi_download
	preppi_filter
	print_bma_motif_es
	print_bma_motif_vs
	print_interactions
	print_path_es
	print_path_vs
	pubmed_open
	query_info
	ramilowski_download
	ramp_id_mapping_table
	ramp_id_type
	ramp_sqlite
	ramp_table
	ramp_tables
	regnetwork_directions
	regnetwork_download
	relations_list_to_table
	relations_table_to_graph
	relations_table_to_list
	remap_dorothea_download
	remap_filtered
	remap_tf_target_download
	reset_config
	resources
	resources_colname
	resources_in
	resource_info
	show_network
	signed_ptms
	simplify_intercell_network
	static_table
	static_tables
	stitch_actions
	stitch_links
	stitch_network
	stitch_remove_prefixes
	subnetwork
	swap_relations
	swissprots_only
	tfcensus_download
	translate_ids
	translate_ids_multi
	trembls_only
	trrust_download
	uniprot_full_id_mapping_table
	uniprot_genesymbol_cleanup
	uniprot_idmapping_id_types
	uniprot_id_mapping_table
	uniprot_id_type
	unique_intercell_network
	unnest_evidences
	uploadlists_id_type
	vinayagam_download
	walk_ontology_tree
	with_extra_attrs
	with_references
	zenodo_download
	Index

