文献调研
CounterResearch:DrugProtAI,SPIDER(http://pmlabstack.pythonanywhere.com/SPIDER),DrugnomeAI (https://astrazeneca-cgr-publications.github.io/DrugnomeAI/)
DrugProtAI:输入特征:1.Domain(size==20)--节点内信息对应实体 2.Protein-Protein Interactions 3.PPI Properties(size==7)--节点间/边信息对应联系,binary(vivo/vitro) 4. PTM(post-translational modification) Count(size==7):糖基化,交联化,二硫键,信号肽,残基修饰 5.糖基化数目:(O-linked, N-linked, S-linked, C-linked, O-alpha-linked, and N-beta-linked)6.Subcellular Locations (SCLs) (50 features)7.Flexibility Sequence Properties (FSPs) (14 features) 8.Physicochemical Properties (PCPs) (32 features) 8.Latent Values (20 features) 9.Grouped dipeptide composition (GDPC) Encodings (25 features)